appropriate evaluation of synovial fluid be carried out in all such patients.

STANLEY P BALLOU

Department of Medicine,
Case Western Reserve University.

References

Acquired antithrombin III deficiency and systemic lupus erythematosus

Sir,

We read with interest the report by Gladman and Urowitz on thromboembolic disease and systemic lupus erythematosus (SLE).1 The thrombotic diathesis in this group of patients was, however, not explained. It has been well established that familial antithrombin III deficiency is associated with a thrombotic diathesis.2 Kauffman and coworkers have linked an acquired antithrombin III deficiency in patients with the nephrotic syndrome to their development of renal vein thrombosis and extrarenal sites of thrombosis.3 They demonstrated a highly significant negative correlation between serum antithrombin III concentration and urinary protein excretion (r = −0.58, p 2-sided < 0.001). Their findings suggested that the low antithrombin III levels were due to loss of the molecule in the urine. Because renal disease with proteinuria is a frequent complication of SLE, we decided to determine plasma antithrombin III levels in a group of SLE patients.

Plasma antithrombin III concentration was assayed by radial immunodiffusion (Behring Diagnostic Corp., La Jolla, CA) on 33 plasma samples from 27 patients with documented SLE, i.e., meeting at least 4 ARA criteria for SLE.4 Twenty-four hour urine collections for creatinine and protein excretion were obtained on all patients within, 1 week of the plasma sample. Creatinine clearances in all patients studied were greater than 30 ml/minute (mean = 68 ml/minute). Protein excretion ranged from 0 to 24–13 g per 24 hours (mean = 3–15 g per 24 hours).

There was a significant inverse correlation of antithrombin III level and urinary protein excretion (r = −0.413, p 2-sided < 0.05). Antithrombin III levels were below normal in 5 patients, on at least 1 determination. Four of these patients had a rise in antithrombin III level to normal on serial determinations. In 2 of these patients there was a simultaneous dramatic decrease in urinary protein excretion of at least 6 g of protein per 24

Correspondence 211

hours. In the other 2 patients urinary protein excretion did not change during the period that their antithrombin III levels normalised. Both of these patients had clinical and serological evidence of active SLE at the time their antithrombin levels were low. Follow-up samples during disease remission showed normal antithrombin III levels. During the study period thromboembolic disease was not documented in any of the patients.

In conclusion, we have demonstrated that patients with SLE can have an acquired antithrombin III deficiency. There is a significant inverse correlation of antithrombin III level and urinary protein excretion. However, the normalisation of the antithrombin III levels in 2 patients occurred when their SLE became inactive, suggesting that low antithrombin III levels in SLE patients may be related to factors other than urinary protein excretion. Only a long-term prospective study of SLE patients with serial antithrombin III assays will determine if there is a relationship between and acquired antithrombin III deficiency and thromboembolic disease in SLE.

MARK P. JARRETT
ARTHUR I. GRAYZEL
PETER BARLAND
IRA SussMAN

Divisions of Rheumatology (Jarrett, Grayzel, Barland) and Hematology (Sussman), Montefiore Hospital and Medical Center, Albert Einstein College of Medicine, Bronx, New York 10467, USA.

References

Beta-2-microglobulin in RA

Sir, In 2 recent studies on serum beta-2-microglobulin (β2μ) in rheumatoid arthritis (RA)1 8 the results are somewhat divergent with regard to the correlation between β2μ and the disease activity. We have studied the same subject and would like to report our findings.

Our material consisted of 51 consecutive inpatients with classical RA (ARA criteria 1958). One patient was excluded because of paraproteinemia.

The clinical examination showed that the 50 patients could be separated into 2 distinct groups with regard to the disease activity. In 39 patients (mean age 53·8 ± 12·0 years, range 25–72 years) no more than a few joints were actually inflamed. Their disease was considered
slightly or moderately active. In contrast, 11 patients (mean age 51 ± 10.2 years, range 33–63 years) had widespread active arthritis with systemic symptoms such as fever and/or rheumatoid complications (amyloidosis 3, significant Sjögren’s syndrome 2, neuropathy 1, necrotising nodules 1). These patients were felt to suffer highly active or complicated rheumatoid disease. The 2 groups were termed groups I and II respectively. β₂μ was determined by a radioimmunoassay, Phadebas β₂-micro test (Pharmacia Diagnostics AB, Uppsala, Sweden).

Serum IgG, IgA, IgM, α₁-antitrypsin, orosomucoid, and haptoglobin were analysed by a turbidimetric immunoassay using an Aminco Rotochem II centrifugal fast analyser. Other routine parameters determined were erythrocyte sedimentation rate (ESR), blood lymphocyte count, and serum creatinine.

A quotient was calculated between the obtained β₂μ value and the β₂μ value calculated from the linear regression line between β₂μ and serum creatinine.¹ The equation was corrected for the present standard of β₂μ, which gives 1.25 times higher values than that previously used for calculation of the regression line. The quotient was calculated in order to correct the β₂μ levels for a decreased glomerular filtration rate (GFR), which always gives higher values of the protein. In this way it was possible to minimise the influence of a decreased kidney function as a cause for elevated β₂μ values. Student’s t test was used for testing the difference between the mean values in groups I and II.

The mean β₂μ concentration was significantly higher in group II than in group I (3.90 mg/l, SD 1.76, and 2.41 mg/l, SD 0.62 respectively; t < 0.01). In group I 41% of the patients had an increased β₂μ (> 2.4 mg/l) and 73% in group II.

Of the other laboratory parameters listed above only ESR and α₁-antitrypsin were significantly higher in group II than in group I (p < 0.01). Serum levels of haptoglobin, orosomucoid, and IgM tended to be higher in group II (p < 0.05). The blood lymphocyte count was slightly lower in group II than in group I (mean 1.27 × 10⁹/l, SD 0.714 × 10⁹ and 0.732 × 10⁹/l, SD 0.694 × 10⁹ respectively; p < 0.1).

The mean serum creatinine values did not differ significantly between the groups (group I 73.3 μmol/l, SD 15.8; group II 81.1 μmol/l, SD 32.7; p > 0.1).

Four of the 50 patients had serum creatinine values above the normal limits, 100 μmol/l in women and 115 in men. Three of these were found in group II. To eliminate an influence on β₂μ of a decreased GFR the 2 groups were compared with respect to the quotient β₂μ found/β₂μ calculated. The difference was still significant (group II 1.44 mg/l, SD 0.304, group I 1.987 mg/l, SD 0.275; p < 0.01). If the 4 patients were excluded, the mean β₂μ value in group II, 3.16 mg/l, SD 1.06, was likewise significantly higher (p < 0.01) than in group I, mean 2.39 mg/l, SD 0.620.

Correlation coefficients were calculated between β₂μ and the ESR, blood lymphocyte count, and the serum values of orosomucoid, α₁-antitrypsin, haptoglobin, IgA, IgG, IgM, and creatinine in all 50 patients. Only the correlations to ESR (r = 0.41) and creatinine (r = 0.65) were significant, p < 0.01. There was no correlation between serum β₂μ and the duration of disease. In healthy subjects a correlation has been observed between serum β₂μ and age.⁴ In this material a tendency to higher β₂μ values with increasing age was observed, r = 0.30, p < 0.05. This agrees with the findings of Sjöblom et al.⁵

Manicourt et al.¹ reported a positive linear relation between β₂μ and Hollander’s ‘joint count’ (r = -0.898). In the study of Sjöblom et al. there was no such close association with the clinical status measured with ‘Ritchie index’ (r = 0.34). Both indices indicate the number of joints actually painful to pressure or movements. To get a more comprehensive expression of the disease activity Sjöblom et al. also considered the physicians’ overall assessment on a 10-point scale. The relation to β₂μ was weak (r = 0.29).

In both studies RA patients with elevated serum creatinine were omitted and in that of Manicourt et al. also those with other complications. Our material was unselected except for 1 case of malignant disease. Elevated values were found in several individuals with mild or moderate clinical activity but were more frequent among those with highly active or complicated disease. The mean β₂μ value was significantly higher in this last group. This group also contained most of the few patients with elevated serum creatinine. However, neither exclusion of these latter patients nor use of a β₂μ quotient, correcting for elevated creatinine values, changed the result.

Our findings support those of Sjöblom et al. in showing only weak correlations of β₂μ with the acute-phase-reactants and with the immunoglobulins in RA. The highest correlations were found with ESR (r = 0.51), IgM (r = 0.49), α₁-antitrypsin (r = 0.24). This low correlation between β₂μ and accepted laboratory parameters of inflammation or ‘activity’ was also stressed by Manicourt et al. The tendency to a negative correlation between β₂μ and total blood lymphocyte count in our patients is contradictory to the last-mentioned authors’ findings. If it does not depend on the sampling of patients or the relatively small number of patients in the study of Manicourt et al. this point needs further investigation.

We do not feel that β₂μ in RA is just a function of the inflammatory activity at a given time. In our opinion it may be suggested that, from unknown causes, elevated β₂μ in RA expresses an inherent trait of the disease in such cases to greater aggressivity or to extra-articular involvement. Long-term controlled studies of patients with elevated β₂μ values are needed to clarify the relationship between β₂μ and the clinical and radiological evolution of the rheumatoid disease as well as the relation between β₂μ and various forms of drug treatment.

TOSTREN STRÖM
Department of Rheumatology,
Central Hospital,
S-961 85 Boden,
Sweden

PER-ERIK EVRIN
Department of Clinical Chemistry,
Central Hospital,
S-961 85 Boden,
Sweden
References

Obituary

Ralph Consden

Dr Ralph Consden, formerly biochemist to the Medical Research Council’s Rheumatism Unit at Taplow, died in November 1980 at the age of 69. His name will forever be associated with the technique of paper chromatography which he developed with his colleagues Gordon and Martin while at the Wool Research Centre in Yorkshire. Although the technique was originated for the separation and identification of amino acids in hydrolysates of proteins, it was rapidly extended to other complex mixtures such as sugars and lipids. Its application played a major part in the unravelling of the many unborn errors of metabolism, notably the mucopolysaccharidoses, many of which have rheumatological implications.

Dr Consden was essentially a practical chemist who excelled and delighted in doing things with his own hands. A major stroke from a cerebral thrombosis some 12 years ago was therefore a shattering blow, depriving him not only of his pleasure in work but also of his two major pastimes, cricket and the piano. He was a fine colleague, enjoyed everyone’s confidence, and his gifts as a cartoonist will long be remembered by his many friends at Taplow.

L. E. G.

Notes

Twelfth Course on Foot Disorders

This course will take place on 18-22 May 1981 in Barcelona. Further information from the secretary of the course, Dr J. C. Gonzalez Casanova, Hospital de San Rafael, Pso. Valle de Hebron, Barcelona 35, Spain.

Symposium on crystalline deposits in human tissues

This symposium will be held at Mount Sinai Hospital, Toronto, Canada, on 13-14 August, 1981. It is an associated meeting of the XIIth Congress of the International Union of Crystallography. The topics include apatite, pyrophosphate, lipid, and other nonproteinaceous crystalline deposits. Details from Dr P.-T. Cheng, Department of Laboratories, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5.
Beta-2-microglobulin in RA.

T Ström and P E Evrin

doi: 10.1136/ard.40.2.211-b

Updated information and services can be found at:
http://ard.bmj.com/content/40/2/211.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/