Hepatitis B Virus and polymyalgia rheumatica: a search for HBsAg, HBsAb, HBcAb, HBeAg, and HBeAb

HANNE ELLING, P. SKINHØJ, AND P. ELLING

From the Departments of Rheumatology and Rehabilitation, Aarhus Amtssygehus, Aarhus, Infectious Diseases, Rigshospitalet, Copenhagen, and Medicine, Randers Centralsygehus, Randers, Denmark

SUMMARY Forty-three consecutive patients with polymyalgia rheumatica were studied for serological markers of actual or previous hepatitis B virus infection. Signs of active virus replication, which include HBsAg supported by the presence of HBeAg and anti-HBc in high titres, were not found in any cases. Anti-HBs, a serological sign of previous hepatitis B virus exposure, was present in 16.8%. The prevalence of anti-HBs is strongly age-dependent in the normal population, and its prevalence in polymyalgia rheumatica was not significantly different from the incidence found in other hospital patients. No significantly raised incidence was found in any subgroups, including patients with or without giant cell arteritis treated or not treated with prednisone and patients with or without liver dysfunction. These results do not support the concept that current or previous hepatitis B virus infection plays any role in the pathogenesis of the majority of cases of polymyalgia rheumatica.

Polymyalgia rheumatica (PMR) and giant cell arteritis are closely related diseases of unknown aetiology. During a search for a virus aetiology Bacon et al. found an increased incidence of hepatitis B virus antibody. This may be an important finding, as some reports during the last few years have demonstrated a link between hepatitis B virus infection and later development of vasculitis (polyarteritis nodosa, essential cryoglobulinaemia). However, the normal serological events in the course of hepatitis B virus infection are characterised by the occurrence of several antibodies and antigens, of which the e/anti e system are indicators of chronicity.

We decided to look for these serological markers in PMR and the results of a search for HBsAg, HBsAb, HBcAb, HBeAg, and HBeAb in the first 43 patients are presented here.

Patients and methods

Forty-three consecutive patients were studied. Thirty-six showed classical symptoms of PMR: muscle aching, extreme tiredness, weight loss, fever, raised erythrocyte sedimentation rate (ESR), and anaemia, and 7 showed mostly signs of temporal arteritis.

Controls comprised 684 patients aged 50–89 years admitted consecutively to a general hospital.

In all but 8 cases a biopsy of a temporal artery was performed. Hgb, ESR, se-fibrinogen, alkaline phosphatase, and immunoglobulins were estimated by routine methods. Antinuclear antibodies (ANA) and rheumatoid factors (latex, Waaler-Rose) were tested for at the State Serum Laboratory. HbsAg was studied by an enzyme immunosorbent technique (Hepanostica, Organon Technica). Anti-Hbs was determined by a radioimmuno precipitation technique previously described. Anti-Hbc was detected by counterimmunoellectrophoresis and by radioimmunoassay (Core-AB, Abott). Anti-Hbe was studied by an immunodiffusion technique.

Results

The youngest patient was 51 and the oldest 86 years old, mean 69 years; 77% were female. Table 1 shows the clinical findings. At the time of investigation 19 patients were on prednisone treatment and 24 had not received any treatment except
analgesics. Ten had had their disease less than 1 month, 6 between 1 and 3 months, and 27 over 3 months. The range was 2 days to 10 years. Giant cell arteritis was found in 48% of 35 patients investigated. The mean ESR before treatment was 97 mm in the first hour range (44-144).

Elevated alkaline phosphatase levels were observed in 57% of 35 patients investigated. No other biochemical signs of hepatic dysfunction were found (normal results for aspartate amino transferase, bilirubin, prothrombin). Two patients had a history of previous hepatitis 10 and 20 years before investigation, and 1 had cirrhosis of the liver.

Table 1 Clinical findings in 43 patients with polymyalgia rheumatica

<table>
<thead>
<tr>
<th>Prednisone</th>
<th>Treated</th>
<th>Not treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal arteritis</td>
<td>+</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Not tested</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Mean ESR</td>
<td>97 (44-144)</td>
<td></td>
</tr>
<tr>
<td>Duration of disease</td>
<td><1 month</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>>1 month <3 months</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>>3 months</td>
<td>27</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>33</td>
</tr>
<tr>
<td>Mean age</td>
<td>68-7 (51-86)</td>
<td></td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>Raised</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Not raised</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Not tested</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 2 Hepatitis B associated antigens and antibodies in 43 patients with polymyalgia rheumatica

<table>
<thead>
<tr>
<th>Patients with polymyalgia</th>
<th>Number studied</th>
<th>HBs Ag Positive</th>
<th>HBs Ab</th>
<th>HBe Ag Positive</th>
<th>HBe Ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>24</td>
<td>0</td>
<td>5 (20.8%)</td>
<td>2*</td>
<td>0</td>
</tr>
<tr>
<td>Treated with prednisone</td>
<td>19</td>
<td>0</td>
<td>2 (10.5%)</td>
<td>2*</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>0</td>
<td>7 (16.8%)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Control patients</td>
<td>684</td>
<td>55</td>
<td>55 (12.4%)</td>
<td>NT</td>
<td></td>
</tr>
</tbody>
</table>

*Also positive for anti-HBs.

Fig. 1 Anti-HBs prevalence rate in 1300 consecutive general hospital patients

No pos: 0 5 8 7 31 28 16 11 (106) (1975)
No studied: 46 171 189 220 189 166 154 185 (1300) (1975)

(Indicated: 95% confidence limits)
Table 3 Clinical data on 43 patients with and without serological signs of hepatitis B virus infection

<table>
<thead>
<tr>
<th>Sero reactions for HBV infection</th>
<th>Number/sex</th>
<th>Temporal arthritis</th>
<th>Mean age years</th>
<th>Duration of disease before investigation</th>
<th>Alk. phosphatases not raised</th>
<th>Maximum ESR (mean)</th>
<th>Treated with prednisone ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>1/6</td>
<td>2/4</td>
<td>66</td>
<td><1 month 1</td>
<td>4 (57%)</td>
<td>67</td>
<td>2/5</td>
</tr>
<tr>
<td>Negative</td>
<td>9/27</td>
<td>15/14</td>
<td>70</td>
<td>>1 <3 months 0</td>
<td></td>
<td>94</td>
<td>17/19</td>
</tr>
</tbody>
</table>

Discussion
The normal sequence of serological events in the course of hepatitis B infection is now well characterised. Signs of active virus replication include HBsAg supported by the presence of HBeAg and anti-HBc in high titres. In agreement with Dickson et al. and other investigators we did not find HBsAg in any sera in the present series. This is further supported in the present report by the lack of HBeAg.

From the sensitive test used in the various investigations it can be concluded that signs of active hepatitis B virus replication such as are seen in some cases of polyarteritis nodosa and other types of vasculitis is not a feature of polymyalgia rheumatica or giant cell arteritis.

Nor does the present report support the concept of any relationship between previous hepatitis B virus infection and subsequent development of polymyalgia rheumatica in the majority of patients, as proposed by Bacon et al. and Müller-Schoop et al. Serological signs of previous hepatitis B virus replication include anti-HBs with or without lower titres of anti-HBc, with the modification based on the recent report of Spero et al. that the presence of anti-HBc may signify ongoing intra-hepatic HBV infection. We have found evidence of previous hepatitis B exposure in 16.8% of patients with polymyalgia rheumatica. However, since the prevalence of anti-HBs is strongly age-dependent and shows an excess prevalence in older age groups (Fig. 1), the prevalence in polymyalgia rheumatica is similar to the incidence in other hospital patients.

This strange age-dependent distribution of anti-HBs antibodies—which is probably a cohort phenomenon and found in most Scandinavian countries—strongly influences the interpretation of previous reports, the data in which are not based on age-corrected control populations.

Our data show a prevalence rate twice as high in the untreated group as in the steriod treated, which may imply, as proposed by Bacon et al., that prednisone decreases the antibody titre effectively.

Our data do not disprove the evidence for hepatitis B virus association in some cases of PMR, but provide evidence that the advocacy of this virus as the major cause of PMR is greatly overstated. PMR as a syndrome may be a final common pathway for a variety of antigen-antibody complex interactions.

References
Hepatitis B virus and polymyalgia rheumatica: a search for HBsAg, HBsAb, HBcAb, HBeAg, and HBeAb.

H Elling, P Skinhøj and P Elling

doi: 10.1136/ard.39.5.511

Updated information and services can be found at:
http://ard.bmj.com/content/39/5/511

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/