Plasma and urinary levels of β2 microglobulin in rheumatoid arthritis

D. MANICOURT,* H. BRAUMAN,† AND S. ORLOFF*

From the University Hospital, Brugmann and the Universites of Brussels (ULB-VUB)

SUMMARY Plasma and urinary levels of β2 microglobulin have been investigated in 21 patients suffering from rheumatoid arthritis (RA). Despite a normal renal glomerular function in all patients 50% of them had supranormal plasma β2 microglobulin levels and 30% had a higher than normal urinary output of β2 microglobulin generally related to the high plasma level. Plasma β2 microglobulin levels paralleled closely the lymphocytosis and the ‘joint count’ both indexes of the severity of the disease. β2 Microglobulin was normally secreted by the lymphoid tissue and it is suggested that it reflects the increase of the total mass and/or membrane turnover of the lymphoid tissue in RA. β2 Microglobulin may be considered as a good parameter of the degree of severity of the joint and extra-articular involvement as well as a useful tool for the evaluation of drug efficacy in rheumatoid arthritis.

β2 Microglobulin isolated from the urine of patients with tubular disorders by Berggard and Bearn in 1968 has since been considered an index of both glomerular and tubular renal function. More recently this moiety has attracted much attention following the discovery of its close relationship with the cell surface bound antigens responsible for cell recognition. Composed of 100 amino acids it has a molecular weight of 11 700 and is normally found in serum and in all biological fluids (Berggard and Bearn, 1968; Evrin and Ribel, 1972).

Sequence studies revealed a close homology of β2 microglobulin with the constant regions of the heavy and light chains of immunoglobulins especially the so called C H₃ region (Peterson et al., 1972; Cunningham et al., 1973; Gray et al., 1973). On the cell surface, β2 microglobulin molecules are non covalently linked to two heavy chains constituting the histocompatibility antigen (Cresswell et al., 1973; Gray et al., 1973; Nakamuro et al., 1973; Poulik et al., 1973; Cresswell et al., 1974; Peterson et al., 1975). β2 Microglobulin is found on the surface of T lymphocytes as a part of a more or less complex system (Bach et al., 1973; Poulik et al., 1973; McCalmon et al., 1975) and is produced and secreted by T and B lymphocytes (Moore et al., 1967) as well as tumoural and non tumoural lymphoid tissue (Kithier et al., 1974; Nilson et al., 1974).

Some auto-immune diseases are characterised by an inflammatory process with lymphocytic infiltration responsible in the case of rheumatoid arthritis (RA) for cartilage destruction, bone erosion, and eventually articular deformation. There is a significant rise of plasma and joint fluid β2 microglobulin values in RA patients and in the saliva of patients with Sjögren’s disease (Talal et al., 1975). In this last syndrome a significant positive correlation between β2 microglobulin and the degree of lymphocytic infiltration of the salivary glands has been observed (Green span et al., 1974; Daniels et al., 1975; Michalski et al., 1975) but unfortunately no information was given by these authors about the degree of severity of the disease and many of the patients reported also had an alteration of the renal function which is known by itself to increase the circulating level of β2 microglobulin (Wibell et al., 1973).

The aim of this present study was to verify the increase of circulating β2 microglobulin in patients with RA and to correlate the levels with the degree of severity of the disease as estimated by the ‘joint count’ (Hollander, 1966).

Patients and methods

The plasma levels as well as 24-hour urinary excretion of β2 microglobulin have been investigated
in 21 patients aged from 25 to 77 years suffering from RA diagnosed according to the internationally accepted criteria (Ropes et al., 1958). The mean duration of the disease was 9 years (range: 6 months to 23 years). Blood samples and 24-hour urine samples were collected at different times of the evolution of the disease for determination of β2 microglobulin as well as other routine biological parameters. Forty-five samples were obtained in all. At the same time the joint count was evaluated by a member of the staff. Patients with RA suffering from complications such as renal insufficiency, amyloidosis, Sjögren’s or infectious disease were deliberately omitted. β2 Microglobulin was radio-immunoassayed using a commercial kit (Phadebas Pharmacia, Uppsala, Sweden).

Results

The results of plasma and urinary β2 microglobulin are presented in Table 1 together with the joint count evaluation, creatinine clearance, and other useful information. More than 50% of the plasma β2 microglobulin levels fell above the upper limits of our normal values for a mixed population of men and women closely matched for their age with the group of patients reported here (normal range 0·8-2·9 mg/l, n = 134). Our normal range does not differ from that reported in the literature using radio-immunoassay techniques (Wibell et al., 1973). The mean value of plasma β2 microglobulin of our RA patients resembles that observed in patients suffering from Sjögren’s disease with or without associated RA (Talal et al., 1975). The urinary values show an unusual frequency of elevated β2 microglobulin compared to the range observed in normal individuals (less than 0·03 to 0·3 mg [1·78 to 17·8 mmol]/24 hours, n = 133). More than 30% of the patients excrete amounts above the upper limit of normal.

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Duration of disease (years)</th>
<th>Plasma β2 microglobulin (mg/l)</th>
<th>Urinary β2 microglobulin (mg/24 h)</th>
<th>Creatinine clearance (ml/min)</th>
<th>Joint count</th>
<th>Lymphocytes (mm⁻³)</th>
<th>ESR (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>72</td>
<td>7</td>
<td>4·8</td>
<td>3·36</td>
<td>93</td>
<td>7</td>
<td>2673</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>30</td>
<td>3</td>
<td>1·5</td>
<td>Traces</td>
<td>120</td>
<td>1</td>
<td>1632</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>40</td>
<td>5</td>
<td>4·3</td>
<td>0·22</td>
<td>120</td>
<td>2</td>
<td>1739</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>25</td>
<td>4</td>
<td>1·7</td>
<td>Traces</td>
<td>125</td>
<td>0</td>
<td>946</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>65</td>
<td>12</td>
<td>3·6</td>
<td>0·16</td>
<td>98</td>
<td>4</td>
<td>1003</td>
<td>108</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>76</td>
<td>5</td>
<td>4·2</td>
<td>0·17</td>
<td>93</td>
<td>6</td>
<td>2673</td>
<td>113</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>76</td>
<td>11</td>
<td>4·1</td>
<td>0·68</td>
<td>79</td>
<td>5</td>
<td>1300</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>71</td>
<td>10</td>
<td>3·3</td>
<td>1·3</td>
<td>79</td>
<td>2</td>
<td>1975</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>49</td>
<td>7</td>
<td>1·3</td>
<td>Traces</td>
<td>86</td>
<td>0</td>
<td>1650</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>64</td>
<td>4</td>
<td>3·6</td>
<td>3·12</td>
<td>90</td>
<td>3</td>
<td>1575</td>
<td>130</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>77</td>
<td>20</td>
<td>4·7</td>
<td>0·85</td>
<td>92</td>
<td>9</td>
<td>3450</td>
<td>115</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>71</td>
<td>13</td>
<td>2·2</td>
<td>Traces</td>
<td>3</td>
<td>2</td>
<td>3450</td>
<td>115</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>34</td>
<td>17</td>
<td>3·2</td>
<td>0·08</td>
<td>110</td>
<td>2</td>
<td>2006</td>
<td>77</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>40</td>
<td>23</td>
<td>2·0</td>
<td>0·05</td>
<td>90</td>
<td>0</td>
<td>1083</td>
<td>97</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>3·2</td>
<td>1</td>
<td>0·43</td>
<td>0·3</td>
<td>103</td>
<td>1</td>
<td>1050</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>63</td>
<td>12</td>
<td>2·1</td>
<td>Traces</td>
<td>92</td>
<td>0</td>
<td>1575</td>
<td>74</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>65</td>
<td>12</td>
<td>4·4</td>
<td>0·71</td>
<td>73</td>
<td>14</td>
<td>2205</td>
<td>120</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>72</td>
<td>3</td>
<td>3·2</td>
<td>0·05</td>
<td>88</td>
<td>3</td>
<td>1330</td>
<td>120</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>60</td>
<td>4</td>
<td>6·6</td>
<td>17·6</td>
<td>116</td>
<td>7</td>
<td>1932</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>M</td>
<td>56</td>
<td>2</td>
<td>4·0</td>
<td>1·92</td>
<td>114</td>
<td>6</td>
<td>6</td>
<td>73</td>
</tr>
<tr>
<td>21</td>
<td>F</td>
<td>48</td>
<td>15</td>
<td>1·8</td>
<td>Traces</td>
<td>100</td>
<td>4</td>
<td>884</td>
<td>62</td>
</tr>
</tbody>
</table>

Range: 25-76 0-5-17 1·3-16·8 0-3-36 73-125 0-17

Normal range: 20-80 0-8-2·9 0-0-3 80-120 0

Plasma and urinary levels of β2 microglobulin in rheumatoid arthritis

[Table 1](#table1)
There was no correlation with age or sex and it is interesting that there was no correlation of β2 microglobulin levels with α2 or gammaglobulin. There was a positive, but non-linear correlation, between joint count and sedimentation rate (Fig. 3).

As far as the levels of urinary β2 microglobulin are concerned there was no correlation between the urinary excretion and plasma β2 microglobulin levels although patients showed a tendency to excrete more β2 microglobulin when the plasma level was well above the upper limit of normal. Some of them occasionally excreted high amounts of β2 microglobulin (see case 17, Table 1) despite normal values of plasma β2 microglobulin and creatinine clearance suggesting some tubular involvement of the kidney.

Figure 4 was chosen to illustrate a typical parallelism between the evolution of plasma β2 microglobulin level and the simultaneous joint count evaluation. It should be stressed that in this particular case acute manifestations of polyneuritis and angiitis accompanied a supplementary rise of β2 microglobulin. The joint count was stabilised at that time. β2 Microglobulin returned to normal values after corticotherapy. Unfortunately this patient died shortly after the last determination.

Discussion

It appears from this study that plasma β2 microglobulin is frequently increased in RA and that this increase closely parallels the joint count which is a reasonable estimate of the degree of severity of the
Plasma and urinary levels of β_2 microglobulin in rheumatoid arthritis

Fig. 4 Evolution of joint count in arbitrary units and plasma β_2 microglobulin in a patient with RA. Note the dramatic and supplementary increase of β_2 microglobulin (arrows A and B), despite a stabilisation of the joint count, coinciding with the appearance of extra-articular manifestation of RA (polyneuritis and angiitis) and the rapid fall of β_2 microglobulin after corticotherapy (arrow C).

Disease. Plasma β_2 microglobulin is also closely related to lymphocytosis and a supplementary increase of β_2 microglobulin can be observed when inflammatory manifestations of other organs than the joints appear during the evolution of the disease (Fig. 4). Our values of plasma β_2 microglobulin levels are comparable with those reported (Michalski et al., 1975) in Sjögren's disease with or without RA.

As the renal function of our patients was within the normal limits and there was no other possible source to affect plasma β_2 microglobulin levels, the elevation observed must be related to the degree of RA involvement. The linear relationship between β_2 microglobulin and the joint count supports this. The joint involvement being due to an inflammatory process in which the lymphocyte infiltration is predominant, it is not surprising that we also found a good correlation between plasma β_2 microglobulin levels and the lymphocyte count. This correlation has probably the same meaning as that observed between the salivary β_2 microglobulin and the degree of lymphocytic involvement of the salivary glands in cases of Sjögren's disease (Michalski et al., 1975). The increase in β_2 microglobulin seems to reflect very well the increase of the total mass of lymphoid tissue and/or the increase of membrane turnover of this tissue, the lymphoid tissue being well known as a major source of β_2 microglobulin.

The apparent discrepancy between the presence of a linear correlation between β_2 microglobulin and joint or lymphocyte count and the absence of a linear correlation between joint and lymphocyte counts cannot be explained satisfactorily in the light of our results. It should, however, be remembered that when an additional manifestation occurs as in patient 1 (Fig. 4) the plasma β_2 microglobulin increases independently of the degree of joint involvement.

The absence of correlation between the sedimentation rate and β_2 microglobulin is probably due to the fact that β_2 microglobulin is related in a more specific way to RA than sedimentation rate. The same holds true of the relation between β_2 microglobulin and lymphocytosis as compared to the relation between β_2 microglobulin and polymorphonuclear count. For instance case 3 had a slightly elevated sedimentation rate but a high plasma β_2 microglobulin level together with a severe destruction of the wrist. It could be assumed that there is some correlation between β_2 microglobulin and immunoglobulin levels due to the structural relationship between β_2 microglobulins and some parts of the heavy or light chains of these proteins. It has, however, been shown that β_2 microglobulin does not originate from these immunoglobulins (Cejka et al., 1973; Nilson et al., 1973).

Finally, the presence of high values of urinary β_2 microglobulins in some of our patients can be explained in most of the cases by the increased plasma β_2 microglobulin. It has been well demonstrated that tubular reabsorption of β_2 microglobulin is a saturable process (Wibell and Evrin, 1974). On these grounds a high urinary level of β_2 microglobulin in conjunction with a moderately increased plasma level may be suggestive of tubular impairment. Despite the absence of amyloidosis on rectal biopsy case 1 might have renal amyloidosis.

β_2 microglobulin plasma levels appear thus to reflect the severity and extension of joint involvement in RA as well as the presence of extra-articular involvement. This parameter may be considered an early warning of articular complication and may be proposed as a useful tool for the evaluation of drug efficacy and for the adjustment of dosage schedules.
References

Plasma and urinary levels of beta2 microglobulin in rheumatoid arthritis.
D Manicourt, H Brauman and S Orloff

Ann Rheum Dis 1978 37: 328-332
doi: 10.1136/ard.37.4.328

Updated information and services can be found at:
http://ard.bmj.com/content/37/4/328

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/