Sulphated glycosaminoglycan synthesis in normal and osteoarthrotic hip cartilage

LAURA S. MCKENZIE, B. A. HORSBURGH, PETER GHOSH, AND T. K. F. TAYLOR

From the Raymond Purves Research Laboratories (University of Sydney), Royal North Shore Hospital of Sydney, St. Leonards, NSW, 2065 Australia

SUMMARY The in vitro sulphated glycosaminoglycan metabolism and uronate content of human aged and osteoarthrotic hip articular cartilages have been examined. Cartilages were sampled from nonfibrillated weight-bearing areas and cultured in Dulbecco Modified Eagle’s medium with 38SO$_4$. Uptake of 38SO$_4$ was corrected for total sulphate concentration and related to uronate levels after papain digestion and dialysis. The levels of uronate in these tissues varied between 0·96% and 2·26% dry weight and did not correlate with either osteoarthrotic grading or sulphated glycosaminoglycan metabolism, irrespective of the source. Glycosaminoglycan metabolism of intact hip articular cartilage from clinically defined osteoarthritics appears, from these results, to be comparable to that derived from nonsymptomatic hip joints from individuals of similar age. Sodium salicylate was found to depress sulphated glycosaminoglycan metabolism in osteoarthrotic cartilage.

The pathophysiology of osteoarthrosis is now well defined. In the early stages it is characterized by softening of articular cartilage followed by fibrillation and loss of the extracellular proteoglycans (McDevitt, 1973; Mankin, 1974). The hydrated proteoglycans of articular cartilage are responsible for its resilience and self lubricating ability (Maroudas, 1973), and their depletion leads to impaired mechanical function (Kempson et al., 1970, 1973).

The chondrocyte response to depletion of its surrounding matrix has been the subject of investigation for many years. Early autoradiographic studies by Collins and McElligott (1960) showed that chondrocytes in osteoarthrotic cartilage exhibited increased 38SO$_4$ uptake. Studies of osteoarthrotic articular cartilage by Mankin and co-workers (Mankin and Lippielo, 1970; Mankin et al., 1971) led these authors to conclude that the synthetic activity of the cartilage cell is increased and it makes some attempt to replace the proteoglycan depleted from the surrounding matrix. Recently, Maroudas (1975) has, however, shown that where articular cartilage is severely fibrillated, 38SO$_4$ uptake is less than normal and uptake in mildly fibrillated cartilage appears to be the same as normal.

These findings are in agreement with those of Bollet and Nance (1966) and Lust et al. (1972).

As part of our studies on the effects of anti-inflammatory drugs on human cartilage metabolism (McKenzie et al., 1976a), we compared the sulphated glycosaminoglycan metabolism in human aged normal and osteoarthrotic hip cartilages. The results suggest that comparable rates of sulphated glycosaminoglycan synthesis exist in osteoarthrotic and 'normal' cartilage from subjects in the same age range.

Materials and methods

SOURCE OF ARTICULAR CARTILAGE

Human articular cartilage was obtained from femoral heads removed surgically for osteoarthritis or after subcapital fracture of the femur. 10 normal and 6 osteoarthrotic femoral heads from donors of known age were studied and classified on the grading system of Collins (1949) according to the severity of osteoarthritic changes. As far as could be ascertained, patients admitted for fracture of the femur had not taken anti-inflammatory drugs one week before surgery. Osteoarthritics, however, were known to use anti-inflammatory drugs on a regular basis.

For 'normal' femoral heads, cartilage was sampled from the superior surface. Osteoarthrotic femoral heads frequently showed complete erosion of cartilage in this area, and cartilage samples were taken from
adjacent areas which were free of osteophytes or severe visible fibrillation. Maroudas et al. (1973) found no significant differences in glycosaminoglycan content over the area of the femoral head, suggesting that the area of cartilage sampled is not critical.

Culture Method
This procedure has been described in detail elsewhere (McKenzie et al., 1976b). Full depth slices of cartilage 1 mm thick were maintained in organ culture, and experiments on 35SO$_4$ uptake were carried out on the first or second day after cultures were set up when viability is maximal (McKenzie et al., 1976b). The culture medium used was Dulbecco Modified Eagle’s minimum essential medium supplemented with 10% fetal calf serum (Commonwealth Serum Laboratories, Melbourne, Victoria).

Incorporation of 35SO$_4$ into Sulphated Glycosaminoglycans
The synthesis of sulphated glycosaminoglycans in ‘normal’ and osteoarthrotic articular cartilage was estimated by determining the extent of incorporation of 35SO$_4$ into these macromolecules over a 6-hour period. The method, which is described in more detail elsewhere (McKenzie et al., 1976b), consisted of the addition of 35SO$_4$ (Radiochemical Centre, Amersham, UK) to the medium 24 hours after initiation of the cultures, to a final concentration of 40 µCi/ml. Three cartilage slices were removed at hourly intervals over the 6-hour experimental period. Incubations were terminated by placing cartilage slices in 5 ml ice-cold physiological saline containing nonradioactive sulphate (1 mg/ml) as a chaser. The saline was changed three times at 10-minute intervals to remove the majority of unincorporated sulphate from the cartilage. Slices were dehydrated in acetone and alcohol and dried under vacuum at 60°, then dry weight determined. Solubilization of the tissue was achieved by digestion of each slice with 1 ml crystalline papain (Merck, 1·5 mg/ml), in 0·1 M acetate buffer pH 5·6, containing 0·05 M EDTA, and 0·005 M cysteine. The digests were dialysed overnight against water to remove the remaining unincorporated 35SO$_4$. The radioactivity associated with the glycosaminoglycans present in aliquots of the digest was determined by standard liquid scintillation counting techniques using a Triton X-100/toluene scintillation mixture. The uronic acid content of the dialysed digests were determined by the method of Bitter and Muir (1962). The extent of incorporation of 36SO$_4$ into glycosaminoglycans was expressed as cpm/µg uronic acid for each tissue slice. Results were analysed statistically as described by McKenzie et al. (1976a).

Effect of Sodium Salicylate on Sulphated Glycosaminoglycan Synthesis in Aged and Osteoarthrotic Articular Hip Cartilage
The effect of varying concentrations of sodium salicylate on sulphated glycosaminoglycan synthesis was determined using cartilage from an osteoarthrotic femoral head from a patient aged 35 years. This was compared with results published previously (McKenzie et al., 1976a) on the effects of sodium salicylate on articular cartilage from 3 ‘healthy’ femoral heads. The concentrations of sodium salicylate studied were 5·0, 2·5, and 1·0 mmol/l, which encompasses the serum therapeutic levels reached by this substance in man (Domenjoz, 1971).

Results

Rate of 35SO$_4$ Incorporation into Sulphated Glycosaminoglycans of Normal and Osteoarthrotic Hip Cartilage in Vitro
The rate of incorporation of 36SO$_4$ into all samples of aged and osteoarthrotic cartilage was measured over a 6-hour period, 24 hours after initial incubation. The 35SO$_4$ in the incubation media was calculated as parts per million of total inorganic sulphate present for each experiment. As the measured radioactivity only reflects a proportion of total 35SO$_4$ utilized in synthesis, a correction factor was used and the rate of 35SO$_4$ uptake determined from the expression

$$\text{Rate} = \frac{\text{Radioactivity/min}}{\text{Uronic Acid (µg)} \times \frac{10^6}{\text{ppm } ^{35}\text{SO}_4} \times \frac{1}{\text{Time (h)}}}$$

While no allowance was made of the incorporation of 35SO$_4$ into keratan sulphate, it was considered on the basis of its low metabolic half life (Maroudas, 1975) not to affect our calculations to any great extent.

The results obtained for 35SO$_4$ uptake into cartilage from 16 femoral heads, together with uronic acid content, age, classification, and OA grading are shown in the Table. As the Table shows there is no measurable difference between the rate of 35SO$_4$ uptake into hip articular cartilage classified as normal or osteoarthrotic grades I–III. The total uronic acid content varied between 0·96% and 2·26% on a dry weight basis. There was no observable correlation between uronic acid level and rate of 35SO$_4$ uptake whether ‘normal’ grade 0, or grades I–III. The effect of sodium salicylate over the concentration range 1·0–5·0 mmol/l on sulphated glycosaminoglycan synthesis in osteoarthrotic cartilage is shown in the Fig. As was previously reported (McKenzie et al., 1976a), sodium salicylate depresses the synthesis of these macromolecules in normal aged articular cartilage, and our results confirm that this is also true for osteoarthrotic cartilage.
Sulphated glycosaminoglycan synthesis in normal and osteoarthrotic hip cartilage

Table Results of 35SO$_4$ uptake into cartilage of 16 femoral heads

<table>
<thead>
<tr>
<th>Classification</th>
<th>OA Grading (Collins, 1949)</th>
<th>Age (years)</th>
<th>Uronic acid (% dry wt)</th>
<th>Rate of 35SO$_4$ uptake/min (µg/h) $\times 10^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
<td>67</td>
<td>2.06</td>
<td>11.3</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>78</td>
<td>1.94</td>
<td>8.5</td>
</tr>
<tr>
<td>F</td>
<td>I</td>
<td>63</td>
<td>1.60</td>
<td>1.5</td>
</tr>
<tr>
<td>F</td>
<td>I</td>
<td>70</td>
<td>1.75</td>
<td>3.6</td>
</tr>
<tr>
<td>F</td>
<td>I</td>
<td>70</td>
<td>1.82</td>
<td>1.1</td>
</tr>
<tr>
<td>F</td>
<td>I</td>
<td>71</td>
<td>1.33</td>
<td>11.1</td>
</tr>
<tr>
<td>OA</td>
<td>I</td>
<td>78</td>
<td>1.99</td>
<td>3.9</td>
</tr>
<tr>
<td>F</td>
<td>I</td>
<td>79</td>
<td>1.92</td>
<td>9.8</td>
</tr>
<tr>
<td>F</td>
<td>I</td>
<td>83</td>
<td>1.20</td>
<td>2.7</td>
</tr>
<tr>
<td>OA</td>
<td>II</td>
<td>70</td>
<td>1.27</td>
<td>1.2</td>
</tr>
<tr>
<td>OA</td>
<td>II</td>
<td>80</td>
<td>1.52</td>
<td>2.2</td>
</tr>
<tr>
<td>F</td>
<td>II</td>
<td>84</td>
<td>2.26</td>
<td>7.0</td>
</tr>
<tr>
<td>OA</td>
<td>III</td>
<td>35</td>
<td>2.17</td>
<td>12.5</td>
</tr>
<tr>
<td>OA</td>
<td>III</td>
<td>51</td>
<td>0.96</td>
<td>12.2</td>
</tr>
<tr>
<td>OA</td>
<td>III</td>
<td>72</td>
<td>1.40</td>
<td>3.8</td>
</tr>
<tr>
<td>F</td>
<td>III</td>
<td>84</td>
<td>1.67</td>
<td>7.0</td>
</tr>
</tbody>
</table>

$F =$ surgically removed for fracture of neck of femur; OA — surgically removed due to osteoarthritis.

*Rate of 35SO$_4$ uptake over a 6-hour period was adjusted for total sulphate concentration and its distribution in media and cartilage (Maroudas, 1975) according to the expression—

\[
\text{Rate} = \frac{\text{Radioactivity/min} \times 10^6}{\text{Uronic Acid (µg)}} \times \frac{1}{\text{ppm }^{35}\text{SO}_4 \times \text{Time (h)}}
\]

Fig. Effects of sodium salicylate at various concentrations on the uptake of 35SO$_4$ into osteoarthrotic cartilage of a femoral head.

Discussion

Osteoarthritis is characterized clinically by pain, stiffness, and certain radiological criteria (Sokoloff, 1969). As articular cartilage is aneural, avascular, and alymphatic, pain must arise from the synovium, joint capsule, and other periaricular tissues but the exact mechanisms of pain production are unknown. From the present studies it is apparent that there is no clear relationship between the severity of cartilage damage, assessed by the grading method of Collins (1949), and the appearance of symptoms characteristic of osteoarthritis, thus, 8 of 9 hips of graded type I and 2 out of 7 graded II–III were derived from patients who came to surgery for fracture of neck of femur and had no previous joint symptoms (Table). The rates of incorporation of 35SO$_4$ into glycosaminoglycans were found to be independent of the grading. It should be noted that in all instances visually intact cartilage was sampled and fibrillated areas avoided. This, however, may not be necessary criteria for cartilage integrity, as noted by McDevitt and Muir (1976) who reported that alteration in cartilage glycosaminoglycans may occur before macroscopical change is apparent. While these findings are in reasonable agreement with the studies of Maroudas (1975), Lust et al. (1972), and Bollet and Nance (1966), they contrast sharply with those of Mankin and co-workers (Mankin and Lippiello, 1970; Mankin et al., 1971; Mankin, 1974) and Mayor and Moskowitz (1974) who consider that 35SO$_4$ incorporation and glycosaminoglycan synthesis is increased in osteoarthrotic cartilage relative to normal. Mankin et al. (1971) also reported a direct correlation between the rate of glycosaminoglycan synthesis and the condition of articular cartilage as assessed by a grading method. We were unable to show such a relationship. Several factors emerge as possible explanations for these differences. First, we sampled only 'healthy' looking cartilage, carefully avoiding areas of obvious damage. Chondrocytes within these localized fibrillated areas of osteoarthrotic cartilage may show a greater metabolic activity in response to the lower levels, size, composition, and heterogeneity of surrounding glycosaminoglycans (Bollet and Nance, 1966; Bjelle et al., 1972; Hjertquist and Lemperg, 1972; Hjertquist and Wasteson, 1972; Brandt, 1974; Maroudas and Evans, 1974; Ficat and Maroudas, 1975). Second, the origin of the osteoarthrotic cartilage that was examined. Apart from one specimen from a young male, all of those examined could be considered as aged. It is possible that the metabolism of aged and structurally fatigued osteoarthrotic cartilage (Freeman and Meachim, 1973) varies from cartilages derived from osteoarthritides of other aetiology. Last, we initiated our investigations of 35SO$_4$ uptake 24 hours after the excised cartilages had been in culture. Previous studies (McKenzie et al., 1976b) had established that cell viability was optimum at this time, and cell 'shock' had probably subsided (Biggers, 1965). After this 24-hour preincubation period, the medium was replaced by fresh solution containing the 35SO$_4$, thereby removing foreign substances such as drugs which may have been
present within the cartilage during the initial incubation period. Some of the most commonly used anti-inflammatory drugs are known to inhibit proteoglycan synthesis (Whitehouse and Bostrom, 1962; McKenzie et al., 1976a) and the degradation of cartilage proteoglycans by neutral proteases (Perper and Oronsky, 1974; Leiss and Kalbhen, 1976).

In previous studies we have shown that the majority of commonly prescribed anti-inflammatory drugs, including sodium salicylate, depress the synthesis of glycosaminoglycans in aged human cartilage (McKenzie et al., 1976a). The comparable rates of 35SO$_4$ incorporation into osteoarthrotic and aged human cartilage suggest that these same anti-inflammatory drugs would also depress the synthesis of glycosaminoglycans in osteoarthrotic cartilage. The study on the effects of sodium salicylate on glycosaminoglycan synthesis in osteoarthrotic cartilage reinforces this conviction, and once more questions the place of these substances in the management of osteoarthritis.

We gratefully acknowledge the assistance of Ms. J. Daley in the preparation of this paper; and the National Health and Medical Research Council, and the Clive and Vera Ramaciotti Foundation for financial support.

References

Sulphated glycosaminoglycan synthesis in normal and osteoarthrotic hip cartilage.

L S McKenzie, B A Horsburgh, P Ghosh and T K Taylor

Ann Rheum Dis 1977 36: 369-373
doi: 10.1136/ard.36.4.369

Updated information and services can be found at:
http://ard.bmj.com/content/36/4/369

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/