Effects of enzyme induction on metabolism of prednisolone
Clinical and laboratory study

PETER M. BROOKS, W. WATSON BUCHANAN, MADELEINE GROVE, AND W. WILSON DOWNIE
From the Centre for Rheumatic Diseases and University Department of Medicine, Royal Infirmary, Glasgow, and Departments of Therapeutics and Clinical Chemistry, Ninewells Hospital and Medical School, Dundee

Effects of enzyme induction on metabolism of prednisolone. Clinical and laboratory study. The addition of phenobarbitone in therapeutic dosage to the drug regimen of prednisolone-treated subjects with rheumatoid arthritis produced measurable deterioration in the clinical status of the patients associated with a more rapid clearance of prednisolone from plasma. It is considered that phenobarbitone induced the hepatic metabolism of prednisolone, effectively reducing the steady state plasma level and resulting in clinical relapse. A slight but significant improvement in the adrenocortical response to tetracosactrin (Synacthen) was noted after phenobarbitone therapy.

The list of drugs capable of inducing increased synthesis of hepatic microsomal enzymes is growing rapidly and includes barbiturates, diphenylhydantoin, glutethimide, meprobamate, phenylbutazone, tolbutamide, and ethanol (Stevenson, 1973). Most attention has been focused on the effects of enzyme induction on concomitant drug therapy with reduction in therapeutic efficacy, e.g. warfarin anticoagulation (MacDonald and others, 1969). However, enhanced metabolism of endogenous substrates such as bilirubin (Kreek and Sleisinger, 1968) may also occur with important therapeutic effects. The rate of metabolism of endogenous cortisol is increased by diphenylhydantoin. Reduction in the plasma half-life of 14C-cortisol has been noted, with a compensatory increase in the cortisol secretion rate (Werk, MacGee, and Sholiton, 1964; Choi and others, 1971). It has been suggested that phenytoin may be used as a nonsurgical method of treating Cushing's syndrome (Conney, 1967). An interesting observation after induction of cortisol metabolism is the excretion in urine of increased amounts of 6β-hydroxy cortisol (Werk and others, 1964). This has become a recognized endogenous marker of hepatic microsomal enzyme induction (McEwen and Stevenson, 1971).

Prednisolone has been available for clinical use since 1955 (Herzog and others, 1955b). Its effectiveness as an antirheumatic agent was quickly established (Herzog and others, 1955a; Bunim and others, 1955; Hart, Clark, and Golding, 1955). Little is known about its metabolism. A considerable degree of hepatic conversion occurs (Vermeulen, 1959), and several studies using nonspecific techniques have suggested that the plasma half-life of prednisolone is longer than that of cortisol. Values for prednisolone range from 192 minutes (Ely, Done, and Kelly, 1956) to 200–220 minutes (Sandberg and Slawson, 1957; Nugent, Eik-Nes, and Tyler, 1959) compared with cortisol with half-life times of between 80 and 113 minutes (Sandberg and Slawson, 1957; Nugent and others, 1959). The heightened potency of the synthetic steroid has been attributed at least in part to its slower degradation.

Multiple drug use is one of the problems of current therapeutics, and is a major factor in the high prevalence of adverse drug reactions (Wade, 1970). The introduction of an enzyme-inducing agent to an established drug regimen might theoretically enhance the clearance of other drugs metabolized in the liver and lead to a deterioration in the patient's clinical status.
Phenobarbitone is still widely prescribed in general practice for night sedation (Dunlop, 1971) and in a recent study on inpatient prescribing at a rheumatic diseases centre, 5 of 153 patients were being prescribed barbiturates on admission to hospital. Because of the known stimulation of native corticosteroid metabolism by enzyme-inducing drugs (Choi and others, 1971) it was decided to observe the clinical and metabolic effects of the administration of phenobarbitone 60 mg twice daily to prednisolone-treated patients with rheumatoid arthritis.

Materials and methods

Nine patients with classical or definite rheumatoid arthritis according to the criteria of the American Rheumatism Association (Ropes and others, 1959) were studied before and after the addition of phenobarbitone 60 mg twice daily to their therapeutic regimen. The mean age of the patients was 50·5 years (range 42–65 years) and the mean duration of disease activity was 16·55 years (range 11–28 years). All had been on prednisolone therapy for at least 6 months with no change in dosage and the mean daily dosage of prednisolone was 10·8 mg (±2·61 mg SD) with a range of 8 mg–15 mg.

Patients were asked to record the duration of morning stiffness and their daily pain score on a pain self-assessment chart (Lee and others, 1973) for 3 days before the study began and for the 14 days of phenobarbitone therapy. Clinical assessment of disease activity, using the articular index of joint tenderness (Ritchie and others, 1968) and the grip strength of the right and left hands (Lee and others, 1974) was performed before and after phenobarbitone treatment. Clinical indices were determined by a single observer at the same time of day on each occasion. A mean was taken of the duration of morning stiffness and the average pain score on the 3 days before starting phenobarbitone and the final 3 days of phenobarbitone therapy.

Before the introduction of phenobarbitone therapy and at the end of the 2-week test period, the prednisolone half-life was estimated. 5 µCi tritiated prednisolone, labelled in the C₂ and C₃ positions on the A ring (Radiochemical Centre, Amersham), was administered intravenously to the patient. Serial venous blood sampling at 30-minute intervals up to 180 minutes was performed. The steroid from 2 ml plasma from each sample was extracted with 15 ml methylene dichloride and a 10 ml aliquot taken to dryness in B14 tubes in a cool water bath. The residue was dissolved in 3 × 0·2 ml aliquots of a 10% ethyl alcohol and toluene solvent mixture. Chromatography was performed using columns containing 1 g Sephadex LH–20–100. Plasma extract was added to the column and eluted with 20 ml 10% ethyl alcohol and toluene. Selective fraction collection was performed. Fraction 4–8 ml contains prednisone, and 9–18 ml contains the prednisolone. The fractions were collected in glass vials and evaporated to dryness. 10 ml liquid scintillator was added to each vial and counting (10-minute counts) carried out on a Nuclear Enterprises liquid scintillation counter. The half-life of prednisolone was calculated using the counts per minute per 100 ml plasma from each of the prednisolone-containing fractions of each blood sample, using the method of 'least squares'.

Selection of the appropriate fractions was previously calculated by separation of a mixture of 0·2 ml tritiated prednisolone (0·5 µCi) and 0·2 ml 'cold' prednisone (1 mg/ml) dissolved in 10% ethyl alcohol and toluene and eluted with 20 ml solvent as previously described. One ml fractions were collected and further divided into 2 × 0·5 ml aliquots. One 0·5 ml fraction from each sample was processed for liquid scintillation counting, and the parallel sample subjected to the blue tetrazolium reaction (Nowaczynski, Goldner, and Genest, 1955). Radioactivity was first detected in sample 9, increasing counts being noted up to sample 15, and eventually disappearing at sample 19. After reaction with blue tetrizolium, each sample was read on the SP500 spectrophotometer at 510 nm. Increase in optical density was first noted in sample 4, increasing to a maximum in sample 7, and was virtually undetectable in sample 9.

The addition of phenobarbitone in varying concentrations did not significantly alter the extraction of steroid from plasma during in vitro studies. Phenobarbitone concentrations ranging from 0–2 mg/100 ml (0·86–2 µmol/l) (the upper limit of the anticonvulsant therapeutic effect) were used. None of the patients in our study exceeded a steady state level of phenobarbitone greater than 1·8 mg/100 ml (7·7–6 µmol/l). No specific studies of binding of prednisolone to plasma proteins were carried out. It is now generally accepted that changes in binding are irrelevant unless a drug is bound to more than 95%. Estimates of plasma binding of prednisolone suggest a figure not exceeding 90%.

After the venous blood sampling at 180 per minute, 250 µg tetracosactrin (Synacthen, Ciba) was injected intravenously and a further venous sample removed after 30 minutes (210 minutes after the original tritiated pred-

<table>
<thead>
<tr>
<th>Table I Results of clinical assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before phenobarbitone (mean ± SEM)</td>
</tr>
<tr>
<td>Articular index</td>
</tr>
<tr>
<td>Pain score</td>
</tr>
<tr>
<td>Morning stiffness (h)</td>
</tr>
<tr>
<td>Grip strength (mmHg)</td>
</tr>
<tr>
<td>Right hand</td>
</tr>
<tr>
<td>Left hand</td>
</tr>
</tbody>
</table>

NS = not significant.
Table II Results of laboratory assessment

<table>
<thead>
<tr>
<th></th>
<th>Before phenobarbitone (mean ± SEM)</th>
<th>After phenobarbitone (mean ± SEM)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prednisolone half-life (min)</td>
<td>132.0 ± 15.2</td>
<td>99.3 ± 10.7</td>
<td><0.0025</td>
</tr>
<tr>
<td>Plasma 11-OHCS level (µg/100 ml baseline)</td>
<td>10.6 ± 0.89</td>
<td>11.6 ± 1.1</td>
<td>NS</td>
</tr>
<tr>
<td>Plasma 11-OHCS level (µg/100 ml) (30 min after teracosactrin)</td>
<td>11.4 ± 1.13</td>
<td>13.6 ± 2.0</td>
<td><0.02</td>
</tr>
</tbody>
</table>

At the end of the trial period the mean phenobarbitone level in plasma for the group was 1.43 mg/100 ml (±0.30 SEM) (61.7 µmol/l±12.9).

Discussion

An important finding is that the plasma half-life of prednisolone, measured by the technique described, is considerably shorter than previously documented. The mean value in the current study is just over 2 hours compared with values between 3 and 4 hours reported previously (Ely and others, 1956; Sandberg and Slauwwhite, 1957; Nugent and others, 1959). One possible explanation may lie in the more specific methodology employed in the present study, particularly the chromatographic separation of prednisolone from its metabolites. The half-life line is constructed from the disappearance rate of radioactivity associated with prednisolone, and excluding counts associated with the major metabolite prednisone. Unfortunately, due to lack of information regarding other circulating metabolites of prednisolone, we could not establish the purity of the prednisolone fraction. However, separate counting of the fractions of the prednisolone aliquot in 4 subjects indicated a smooth rise to the count peak and a similar fall suggesting that the bulk of radioactivity was associated with a single compound. Further work needs to be carried out on separation techniques but the method currently used does seem to demonstrate changes in half-times of radioactive prednisolone.

Notwithstanding possible imperfections in the counting technique, another explanation for the discrepancy in the half-life values may lie in the differences in steroid dosage employed. Early studies were carried out on subjects receiving large doses of prednisolone intravenously or taking massive doses, e.g. 80 mg per day by mouth. It is known that metabolism of prednisolone follows first order kinetics, and it is possible that the large amounts of prednisolone used previously saturated the metabolic capacity of the hepatic microsomes, leading to apparently long half-lives. It is interesting...
that the control values for prednisolone half-lives found in the present study in subjects receiving low dose oral therapy are not significantly different from values found in age- and sex-matched volunteers who received only a tracer dose of prednisolone intravenously (W. W. Downie, unpublished, 1975).

This supports the suggestion that at a critical plasma level saturation kinetics may apply to prednisolone. Until a reliable method is available for measuring steady state plasma levels of prednisolone this question will remain unanswered.

The results indicate that shortening of the plasma half-life of prednisolone is produced by administration of phenobarbitone in therapeutic doses. No change in the volume of distribution was noted, suggesting that the reduction in half-life is a feature of enhanced metabolism rather than a distribution phenomenon. The level of serum albumin may be important in determining the relative percentages of 'free' and bound prednisolone (Lewis and others, 1971). Low albumin levels are associated with a higher percentage of 'free' and hence biologically active steroid, resulting in enhanced toxicity.

No estimations of protein binding nor of specific steroid binding globulin were carried out in the present study but results of similar experiments on cortisol metabolism have indicated that neither percentage binding nor binding protein levels were altered by enzyme-inducing drugs such as diphenylhydantoin (Choi and others, 1971).

The quantifiable clinical deterioration noted during phenobarbitone administration is unlikely to represent the natural fluctuations of activity of the arthritis since the deterioration was noted in 8 of the 9 patients studied and did not occur in the single patient whose half-life remained unchanged. The likeliest explanation is that increases in the rate of prednisolone clearance will reduce circulating and tissue levels of the drug, producing in effect a reduction in dosage with subsequent deterioration in clinical status. A similar deterioration in ventilatory function in dexamethasone-treated asthmatic subjects has been shown after introduction of diphenylhydantoin (Brooks and others, 1972). For this reason it is suggested that a change in disease activity after introduction of additional therapy should be considered to have an iatrogenic component related to changes in established drug metabolism rather than be dismissed casually as a naturally occurring relapse or remission.

The changes in endogenous adrenocortical function are not dramatic but the overall improvement in the plasma 11-OHCS response to tetracosactrin after phenobarbitone, and in particular the dramatic improvement shown by one subject, suggests that an enzyme-inducing agent may be useful in reversing the most important side effect of corticosteroid drug therapy, namely suppression of the activity of the cerebro-hypothalamo-pituitary-adrenal axis (Nuki and Downie, 1971). Failure to produce a more dramatic degree of improvement in adrenocortical function in our subjects may be related to the duration of therapy, the relatively high dosage schedules of prednisolone, or the low dosage of phenobarbitone employed.

The laboratory investigations for this study were financially supported by the Arthritis and Rheumatism Council of Great Britain. One of us (P.M.B.) is in receipt of an A. H. Robins Research Fellowship in clinical rheumatology.

References

Kreek, M. J., and Slesinger, M. J. (1968) Lancet, 2, 73 (Reduction of serum unconjugated bilirubin with phenobarbitone in adult congenital non-haemolytic unconjugated hyperbilirubinaemia)
Effects of enzyme induction on metabolism of prednisolone

STEVENSON, I. H. (1973) Digestion, 8, 80 (The significance and determinants of drug metabolism in man)
VERMEULEN, A. (1959) J. Endocr., 18, 278 (The metabolism of 4–14C prednisolone)
WOOD, J. B., FRANKLAND, A. W., JAMES, V. H. T., AND LANDON, J. (1965) Lancet, 1, 243 (A rapid test of adrenocortical function)
Effects of enzyme induction on metabolism of prednisolone. Clinical and laboratory study.

P M Brooks, W W Buchanan, M Grove and W W Downie

Ann Rheum Dis 1976 35: 339-343
doi: 10.1136/ard.35.4.339

Updated information and services can be found at:
http://ard.bmj.com/content/35/4/339

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/