Activation of human leucocyte procollagenase by rheumatoid synovial tissue culture medium

J. WIZE, T. ABGAROWICZ,* E. WOJTECKA-ŁUKASIK, S. KSIĘŻNY, AND A. M. DANCEWICZ†
From the Departments of Biochemistry and Pathological Anatomy,* Institute of Rheumatology, and Department of Radiobiology and Health Protection,† Institute of Nuclear Research, Warsaw, Poland

Wize, J., Abgarowicz, T., Wojtecka-Łukasik, E., Księżny, S., and Dancewicz, A. M. (1975). Annals of the Rheumatic Diseases, 34, 520–523. Activation of human leucocyte procollagenase by rheumatoid synovial tissue culture medium. Production of a factor activating leucocyte procollagenase by tissue culture of rheumatoid synovium was shown. The activator was isolated, partly purified, and shown to be thermolabile, nondialysable, and had no activity toward casein, haemoglobin, histones, and PZ-peptide. The activity of the activator was partly decreased by trypsin.

A conspicuous migration of leucocytes to inflamed joints is observed in chronic rheumatoid arthritis. This disease is associated with progressive destruction of collagenous articular and juxta-articular structures such as cartilage, bone, and tendon. It is likely that synovial collagenase(s) (Evanson, Jeffrey, and Krane, 1968; Harris, DiBona, and Krane, 1969, 1971) and collagenase originating from polymorphonuclear leucocytes (Lazarus, Daniels, Brown, Bladen, and Fullmer, 1968) play a key role in this process.

Furthermore, there are indications that the collagenolytic activity of rheumatoid synovial fluid may be enhanced due to the conversion of leucocyte procollagenase to the active form (Kruze and Wojtecka, 1972). Thus, it can be assumed that rheumatoid synovial fluid contains an endogenous factor able to activate leucocyte procollagenase. However, the origin of the activator present in rheumatoid synovial fluid is unknown.

Procollagenase activator has been shown in culture medium of tadpole explants (Harper and Gross, 1972) and mouse long bone (Vaes, 1972). It is reasonable then to assume that the activator present in rheumatoid but not in osteoarthritic synovial fluid (Oronsky, Perper, and Schroder, 1973) may originate from rheumatoid synovial tissue. The results presented in this paper show that rheumatoid synovial tissue culture produces a factor activating human leucocyte procollagenase.

Materials and methods

Culture technique
Synovial tissue from patients with rheumatoid arthritis, obtained at operation, was trimmed of fat and cut into 3 mm² pieces. Explants were cultured up to 5 days in disposable flasks in Eagle’s medium as described by Evanov and others (1968). Culture media were harvested daily and replaced with fresh ones. Each day’s medium was centrifuged and dialysed against 0·05 mol/l TRIS-HCl buffer pH 7·5, containing 0·005 mol/l CaCl₂.

Human leucocyte procollagenase
White blood cells were obtained from normal adult donors. Isolation of leucocytes and preparation of leucocyte homogenate was performed as described by Kruze and Wojtecka (1972). Leucocyte homogenate was chromatographed on DEAE Sephadex A-50 column to separate the collagenase-procollagenase mixture from the bulk of protein. Eluting buffer was 0-02 mol/l TRIS-HCl pH 8·6, containing 0-002 mol/l CaCl₂ on which a linear gradient from 0 to 0·4 mol/l NaCl was superimposed. The peak eluted between 0·06 and 0·12 mol/l NaCl was taken as a partially purified procollagenase.

Isolation of activator from culture medium
Pooled, dialysed culture media were freed from collagenase by its adsorption on collagen fibrils according to Harper, Bloch and Gross (1971). The resulting medium devoid of synovial collagenase was used as crude preparation of the activator in assays of its action on leucocyte procollagenase. In order to isolate the activator to identify it, pooled

Accepted for publication March 5, 1975.
Correspondence to Dr. Stefan Ksiezny, Dept. of Biochemistry, Institute of Rheumatology, ul. Spartanska 1, 02-637 Warsaw, Poland.
dialysed culture media were concentrated using Aquacide (Calbiochem, Los Angeles, Calif.), then dialysed against 0·1 mol/l TRIS-HCl buffer pH 7·5, containing 1 mol/l NaCl and 0·005 mol/l CaCl₂, and chromatographed on a 2·4 cm × 75 cm column of Sephadex G-150 equilibrated with the same buffer. The fractions containing the activator were pooled, dialysed against 0·01 mol/l TRIS-HCl buffer pH 7·5, containing 0·005 mol/l CaCl₂ and 0·2 mol/l NaCl, and further purified by separation on Sephadex G-100 column (1·6 cm × 75 cm). The effluent fractions containing the activator were pooled and stored at -20°C.

COLLAGEN
Acid soluble calf skin collagen was isolated and purified by the method of Kang, Nagai, Piez, and Gross (1966). For assays, approximately 0·2% collagen solution in cold 0·05% acetic acid was used. Before use, collagen solution was dialysed against 0·05 mol/l TRIS-HCl pH 7·5 containing 0·2 mol/l NaCl and 0·005 mol/l CaCl₂ and centrifuged to remove small fragments and particles not dissoluted. The origin of collagen was checked by its susceptibility to the action of trypsin added in a final concentration of 1% to collagen. Only 3% of collagen was digested in this test.

ASSAY OF THE ACTIVATOR
The presence of the activator and its relative activity was estimated from the difference in the collagenolytic activity of the systems containing procollagenase with or without the activator.

ASSAY OF COLLAGENOLYTIC ACTIVITY
Collagenolytic activity was measured by determination of hydroxyproline content in soluble peptides released from reconstituted collagen fibrils as described elsewhere (Kruze and Wojtecka, 1972). In addition, collagenolytic activity was tested by measuring changes in viscosity of collagen solution incubated in the presence of the systems tested. Viscosity measurements were performed at 25°C using Ostwald type of viscometer.

OTHER METHODS
Proteolytic activity of the activator was assayed using casein (Kunitz, 1947), urea denatured haemoglobin (Anson, 1939), and histones (Davies, Ria, Krakauer, and Weissmann, 1971) as substrates. Assay for collagen-peptidase activity using 4-phenylazobenzoxy-carbonyl-L-prolyl-L-leucyl-L-glutamyl-L-prolyl-D-arginine as a substrate was performed as described by Wünsch and Heidrich (1963). Hydroxyproline was determined by the method of Stegemann and Stalder (1967) and protein by the method of Lowry, Rosebrough, Farr, and Randall (1951). Polyacrylamide gel disc electrophoresis of collagen degradation products was carried out according to the procedure of Nagai, Gross, and Piez (1964).

Results and discussion
During the first 2 days of culturing rheumatoid synovium no significant collagenase activity was detected in the medium. During the following days the collagenase was produced in the excreted medium with the yield similar to that reported by Evanson and others (1968). When leucocyte procollagenase was supplemented with crude preparation of the activator, the collagenolytic activity of the system was increased significantly (Table I).

When attempting to isolate the activator, the media which were pooled from the 2nd to 5th day of culture were subjected to molecular sieve chromatography on Sephadex G-150 and then on Sephadex G-100. The elution profile obtained from the second chromatography had a single, well separated peak of the activator (Fig. 1). The partially purified activator had very low collagenolytic activity but a pronounced ability to activate the leucocyte procollagenase (Table II), but this activity was destroyed by heating for 10 minutes at 100°C; heating for 10 minutes at 60°C or incubation with trypsin caused only partial decrease

Table I Effect of rheumatoid synovium culture media devoid of collagenase activity on human leucocyte procollagenase

<table>
<thead>
<tr>
<th>Incubation system (Day of culture)</th>
<th>Collagenolytic activity* (μg hydroxyproline released)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>27·2</td>
</tr>
<tr>
<td>2nd</td>
<td>95·6</td>
</tr>
<tr>
<td>3rd</td>
<td>100·8</td>
</tr>
<tr>
<td>4th</td>
<td>105·6</td>
</tr>
<tr>
<td>Control without medium</td>
<td>10·0</td>
</tr>
</tbody>
</table>

* The buffer blank of 15 μg hydroxyproline and hydroxyproline contained in culture medium were subtracted from the samples. The incubation system consisted of 0·02 ml leucocyte procollagenase (300 μg protein), culture medium harvested at a day indicated (100 μg of protein), 1·5 ml collagen gel (300 μg hydroxyproline), and 0·05 mol/l TRIS-HCl buffer pH 7·5, containing 0·005 mol/l CaCl₂ added to final volume of 3 ml.
Table II Effect of partially purified activator from culture medium of rheumatoid synovial tissue on human leucocyte procollagenase

<table>
<thead>
<tr>
<th>Incubation system</th>
<th>Collagenolytic activity* (µg hydroxyproline released)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full system</td>
<td>79-0</td>
</tr>
<tr>
<td>Without procollagenase</td>
<td>2-5</td>
</tr>
<tr>
<td>Without activator</td>
<td>10-0</td>
</tr>
<tr>
<td>Activator heated 10 min</td>
<td>15-0</td>
</tr>
<tr>
<td>at 100°C</td>
<td></td>
</tr>
<tr>
<td>Activator heated 10 min</td>
<td></td>
</tr>
<tr>
<td>at 60°C</td>
<td>65-0</td>
</tr>
<tr>
<td>Activator trypsinized†</td>
<td>46-2</td>
</tr>
</tbody>
</table>

* The buffer blank of 15 µg hydroxyproline was subtracted from all samples.
† The activator (5 µg protein) was preincubated with trypsin (10 µg/ml) at room temperature for 30 min. After preincubation, 400 µg of soybean trypsin inhibitor was added and collagenolytic activity was assayed as described in 'Materials and methods'.

The collagen solution treated with procollagenase and activator was analysed by disc electrophoresis on polyacrylamide gels. The separation pattern obtained was essentially the same (Fig. 3) as that described for products of collagen degradation by animal collagenases (Lazarus and others, 1968; Harris and others, 1969).

The results show that the activator of leucocyte procollagenase is produced by rheumatoid synovium in tissue culture. The activator probably belongs to the class of procollagenase activators produced in tadpole explant and bone explant tissue cultures and regarded as specific proteinase (Harper and others, 1971; Vaes, 1972). These activators act as specific proteinase(s) converting procollagenase into collagenase through limited proteolysis. However, there is as yet no proof to confirm this mechanism of procollagenase activation by the activator from rheumatoid synovial tissue culture medium.

Production of the activator by the rheumatoid synovium in tissue culture might account for the presence of the activator in the synovial fluids of patients with rheumatoid arthritis (Kruze and Wojtowicz, 1972).

Collagen degradation process seen in rheumatoid arthritis depends on a number of factors. Production of the activator of leucocyte procollagenase in conjunction with leucocyte immigration into synovial fluid and with procollagenase and collagenase released from leucocytes seems to contribute significantly to the destructive process in rheumatoid arthritis.

In activity. There was no activity toward casein, haemoglobin, and histones, the common substrates of proteolytic enzymes. It had also no activity toward PZ-peptide.

Viscosity measurements showed that partially purified activator had no effect on collagen solution but added together with procollagenase increased its collagenolytic activity (Fig. 2). The composition of the activator was essentially the same (Fig. 3) as that described for products of collagen degradation by animal collagenases (Lazarus and others, 1968; Harris and others, 1969).

The results show that the activator of leucocyte procollagenase is produced by rheumatoid synovium in tissue culture. The activator probably belongs to the class of procollagenase activators produced in tadpole explant and bone explant tissue cultures and regarded as specific proteinase (Harper and others, 1971; Vaes, 1972). These activators act as specific proteinase(s) converting procollagenase into collagenase through limited proteolysis. However, there is as yet no proof to confirm this mechanism of procollagenase activation by the activator from rheumatoid synovial tissue culture medium.

Production of the activator by the rheumatoid synovium in tissue culture might account for the presence of the activator in the synovial fluids of patients with rheumatoid arthritis (Kruze and Wojtowicz, 1972).

Collagen degradation process seen in rheumatoid arthritis depends on a number of factors. Production of the activator of leucocyte procollagenase in conjunction with leucocyte immigration into synovial fluid and with procollagenase and collagenase released from leucocytes seems to contribute significantly to the destructive process in rheumatoid arthritis.
Activation of human leucocyte procollagenase

References

——, BLOCH, K. J., AND GROSS, J. (1971) Biochemistry, 10, 3035 (The zymogen of tadpole collagenase)

KANG, A. H., NAGAI, Y., PIEZ, K. A., AND GROSS, J. (1966) Biochemistry, 5, 509 (Studies on the structure of collagen utilizing a collagenolytic enzyme from tadpole)

VAES, G. (1972) Biochem. J., 126, 275 (The release of collagenase as an inactive proenzyme by bone explants in culture)

Activation of human leucocyte procollagenase by rheumatoid synovial tissue culture medium.

J Wize, T Abgarowicz, E Wojtecka-Lukasik, S Ksiezy and A M Dancewicz

Ann Rheum Dis 1975 34: 520-523
doi: 10.1136/ard.34.6.520

Updated information and services can be found at:
http://ard.bmj.com/content/34/6/520

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/