Lack of correlation of synovial histology with joint damage in rheumatoid arthritis

D. R. F. HENDERSON, M. I. V. JAYSON, AND C. R. TRIBE
From the Department of Medicine, University of Bristol; the Royal National Hospital for Rheumatic Diseases, Bath; and the Department of Pathology, Southmead Hospital, Bristol

Henderson, D. R. F., Jayson, M. I. V., and Tribe, C. R. (1975). Annals of the Rheumatic Diseases, 34, 7. Lack of correlation of synovial histology with joint damage in rheumatoid arthritis. Twenty-two patients with rheumatoid arthritis (RA) involving the knee were studied. The systemic features of the disease were graded and the extent of knee involvement was quantified in terms of the clinical, radiological, and arthroscopic appearances. Adequate synovial biopsies were obtained from 21 patients. In these patients no correlation could be found between the severity of any of the features on histological examination nor between any of these features and the extent of local joint damage, inflammation, or the severity of the systemic disease.

It has been thought that the histological features of RA do not reliably indicate the degree of activity or prognosis of the disease and that they are not specific for that condition (Hamerman, Sandson, and Schubert, 1963). Indeed, Waxman and Sledge (1973) were unable to distinguish histologically between rheumatoid and osteoarthritic synovia.

Recently, however, Muirden and Mills (1971) found in rheumatoid joints submitted for synovectomy a direct correlation between the degree of synovial lining cell hyperplasia and joint damage and an inverse correlation between the degree of lymphocytic infiltration and joint damage. Lymphocytes might play a helpful role in protecting the rheumatoid joint. Muirden (1970) has also reported a significant relationship between histological estimates of the extent of the iron deposits with the grades of x-ray changes in biopsied joints.

These findings are obviously of importance and suggest that methods of determining the prognosis of RA and the choice of appropriate therapy could be based on the histological appearances of synovial biopsies.

Precise quantification of the degree of synovial inflammation and the amount of articular damage in the joints of patients with RA is difficult. Physical examination and radiology provide information which is useful but indirect. For example, the degree of damage to articulating surfaces seen at arthroscopy may far exceed that suggested by x-rays. Arthroscopy of the knee allows direct inspection of much of the synovium and articulating surfaces. It also enables direct biopsy of selected sites without recourse to arthroscopy (Jayson and Henderson, 1973).

The present study was directed towards confirming the findings of Muirden and Mills (1971). Clinical parameters, arthroscopic findings, and x-ray changes were quantified and used to determine the activity of the inflammatory process and the degree of joint damage. These have been compared with the graded histological changes in synovial biopsies.

Materials and methods

Studies were performed on patients with definite or classical RA (Ropes, Bennett, Cobb, Jacox, and Jessar, 1959) and significant involvement of at least one knee. The clinical assessments were performed by one of us (D.H.) before arthroscopy, and the following data were noted: age, sex, duration of disease, treatment with gold or corticosteroids, duration of morning stiffness, presence of nodules, grip strength, haemoglobin, ESR, rheumatoid factor, functional capacity (Steinbroker, Traeger, and Batternman, 1949).

The involved knees were assessed for the extent of inflammatory changes and the degree of joint damage, and the following clinical features were noted: duration of knee involvement, synovial thickening, effusion, tenderness or pain on movement, range of movement, fixed flexion deformity (measured in degrees with a goniometer). When appropriate the information was graded 0 = normal; 1 = doubtful or minimal abnormality; 2 = definite abnormality; 3 = gross abnormality.

X-rays of the knees were coded and read simultaneously by two of us (M.I.V.J. and D.H.) without knowledge of the clinical and arthroscopic findings, and these features examined: osteoporosis, surface erosions, geodes (bone

Accepted for publication May 12, 1974.
Reprint requests to: Dr. M. I. V. Jayson, Department of Medicine, Bristol Royal Infirmary, Bristol BS2 8HW.
cysts), osteophytes, loss of joint space in (a) patello-
 femoral, (b) medial tibiofemoral, (c) lateral tibiofemoral
compartments.

The observations were scored 0 = normal; 1 = possible
change; 2 = definite change; 3 = gross change. The total
of these scores was calculated by adding up the various
scores. The maximum and worst possible radiological
score was, therefore, 21.

Arthroscopy of the knee was performed under local
anaesthesia using the Storz Arthroscope (Jayson and
Henderson, 1973). Particular attention was paid to
degree of synovial erythema, extent of synovial prolifera-
tion, contact bleeding, fibrin, and cartilage damage. Each
of these observations was again graded on a 0 to 3
scale.

Multiple synovial biopsies were obtained under direct
vision. These were mainly taken from the medial tibio-
femoral compartment where synovial proliferation is
usually most obvious, but also were obtained from the
suprapatellar pouch.

The biopsies were fixed in formol saline and sections
were stained with haematoxylin and eosin and by Perl's
Prussian Blue reaction for iron. On occasions, step
sections were taken to obtain adequate amounts of tissue
for histological examination.

The sections were coded and assessed without knowl-
dge of their identity by all three authors. Standard
sections were kindly provided by Dr. K. D. Muirden and
the biopsies were graded with frequent reference to those
sections. Features quantified were synovial lining-cell
proliferation and lymphocytic infiltration, and gradings
were established between 1 = normal or slight change to
4 = gross change, in a similar fashion to that used by
Muirden and Mills (1971).

In addition, the following features were noted and
graded on the same scale: total mononuclear cell inflam-
ation, degree of plasma cell infiltration, synovial surface
cell pleomorphism, vascular proliferation, thickening of
vessel walls, iron deposition.

Results

The general characteristics of the patients are shown in
Table I and the clinical, radiological, and arthro-
scopical changes in the involved knees in Table II.
No correlations could be found between the severity of
any of the clinical parameters for general disease and the severity of the process within the knee.

Of 22 patients, adequate biopsies for histological
grading were obtained from 21, and the data pre-
sented are restricted to these patients.

Table I Systemic features of 21 patients

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>57.0 yrs (21–74 yrs)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>Male 10, female 11</td>
<td></td>
</tr>
<tr>
<td>Duration of RA</td>
<td>7.5 yrs (0–15–25 yrs)</td>
<td></td>
</tr>
<tr>
<td>Duration of morning stiffness</td>
<td>2.4 h (0–12 h)</td>
<td></td>
</tr>
<tr>
<td>Nodules</td>
<td>Present 5, absent 16</td>
<td></td>
</tr>
<tr>
<td>Functional capacity</td>
<td>I, II, III 9, IV 0</td>
<td></td>
</tr>
<tr>
<td>Blood sedimentation rate</td>
<td>62 mm/h (10–108 mm/h)</td>
<td></td>
</tr>
<tr>
<td>Haemoglobin</td>
<td>12.4 g/dl (9.8–17.1 g/dl)</td>
<td></td>
</tr>
<tr>
<td>RA latex test</td>
<td>Positive 20, negative 1</td>
<td></td>
</tr>
</tbody>
</table>

Table II Data on 21 knees examined

<table>
<thead>
<tr>
<th>Assessments</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of knee involvement (yrs)</td>
<td>5.7</td>
<td>(0.15–22)</td>
</tr>
<tr>
<td>Synovial thickening (yrs)</td>
<td>2.1</td>
<td>1–3</td>
</tr>
<tr>
<td>Effusion (yrs)</td>
<td>1.6</td>
<td>0–3</td>
</tr>
<tr>
<td>Tenderness or pain on movement (yrs)</td>
<td>1.6</td>
<td>0–3</td>
</tr>
<tr>
<td>Fixed flexion deformity (degree)</td>
<td>6.7</td>
<td>0°–20°</td>
</tr>
<tr>
<td>Radiological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray score</td>
<td>8.7</td>
<td>0–17</td>
</tr>
<tr>
<td>Arthroscopic score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythema</td>
<td>1.6</td>
<td>1–3</td>
</tr>
<tr>
<td>Synovial proliferation</td>
<td>2.2</td>
<td>1–3</td>
</tr>
<tr>
<td>Contact bleeding</td>
<td>1.2</td>
<td>0–3</td>
</tr>
<tr>
<td>Fibrin</td>
<td>2.1</td>
<td>0–3</td>
</tr>
<tr>
<td>Cartilage damage</td>
<td>1.7</td>
<td>0–3</td>
</tr>
</tbody>
</table>

FIG. 1 Synovial biopsy from a patient showing severe
synovial lining-cell proliferation with some pali-
sading associated with a marked mixed cellular
infiltration in the underlying tissue consisting of both
lymphocytes and plasma cells. This illustrates that
good grades in the two histological criteria studied by
Muirden and Mills (1971) can, and frequently do, occur
in the same biopsy. H. & E. ×264
Lack of correlation of synovial histology with joint damage

Histological grading often proved extremely difficult because of marked variation in the degree of cellular reaction within any specimen and between different specimens. Two photomicrographs of synovial biopsies (Figs 1 and 2) are included to illustrate the difficulties in histological assessment. The specimens were considered as a whole, however, and an attempt was made to assess the best overall grading with the proviso that the features of the specimens from the tibiofemoral compartments were weighted more heavily than those from the suprapatellar pouch.

Fig. 3 shows the comparison between lymphocytic infiltration and synovial lining-cell hyperplasia. Although there was a tendency for synovial lining-cell hyperplasia to be worse in the patients with the least lymphocytic infiltration, this change did not reach statistical significance. None of the pathological specimens showed grade 4 lymphocytic infiltration as shown by Muirden and Mills (1971). Table III lists the comparisons between histological features which were undertaken. No significant correlations emerged.

Table IV lists the comparisons made between the degrees of lymphocytic infiltration (a) and the clinical, radiological, and arthroscopic evidence of synovial inflammation and joint damage. No

FIG. 2 Synovial biopsy from a patient showing two contrasting synovial villi. On the left, the villus shows marked synovial lining-cell hyperplasia with some palisading and only a scanty underlying cellular infiltration. In contrast, the villus on the right has a thinner, more indistinct synovial lining with an intense underlying lymphocytic and plasma cell infiltration. This illustrates the difficulties of grading histological features within different areas of one biopsy. H. & E. ×436

Table III Comparisons between histological features

<table>
<thead>
<tr>
<th>Lymphocytic infiltration</th>
<th>Synovial surface cell hyperplasia</th>
<th>Iron deposition</th>
<th>Lining cell pleomorphism</th>
<th>Giant cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Synovial surface cell hyperplasia</td>
<td>Iron deposition</td>
<td>Lining cell pleomorphism</td>
<td>Giant cells</td>
</tr>
<tr>
<td>3</td>
<td>Synovial surface cell hyperplasia</td>
<td>Iron deposition</td>
<td>Lining cell pleomorphism</td>
<td>Giant cells</td>
</tr>
<tr>
<td>2</td>
<td>Synovial surface cell hyperplasia</td>
<td>Iron deposition</td>
<td>Lining cell pleomorphism</td>
<td>Giant cells</td>
</tr>
<tr>
<td>1</td>
<td>Synovial surface cell hyperplasia</td>
<td>Iron deposition</td>
<td>Lining cell pleomorphism</td>
<td>Giant cells</td>
</tr>
</tbody>
</table>

Synovial lining cell hyperplasia (grade)

FIG. 3 Comparison of lymphocytic infiltration and synovial lining cell hyperplasia
significant correlations were found. Figs 4 and 5 illustrate comparisons of lymphocytic infiltration with the arthroscopic evidence of cartilage damage and with the x-ray score.

Table IV also lists the comparisons between lining-cell proliferation (b) with the grades for inflammation and articular damage. Again, there were no significant correlations. Figs 6 and 7 illustrate comparisons of synovial lining-cell proliferation with the arthroscopic evidence of cartilage damage and with the x-ray score. Comparisons were drawn between the other histological features, including the extent of iron deposition and the degrees of synovial inflammation and joint damage. No significant correlations were found.

Table IV List of features compared with (a) lymphocytic infiltration, (b) synovial lining cell proliferation

<table>
<thead>
<tr>
<th>Systemic</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duration of RA</td>
</tr>
<tr>
<td></td>
<td>Duration of morning stiffness</td>
</tr>
<tr>
<td></td>
<td>Blood sedimentation rate</td>
</tr>
<tr>
<td></td>
<td>Treatment with gold or corticosteroids</td>
</tr>
<tr>
<td>Knee–clinical</td>
<td>Duration of knee involvement</td>
</tr>
<tr>
<td></td>
<td>Synovial thickening</td>
</tr>
<tr>
<td></td>
<td>Effusion</td>
</tr>
<tr>
<td></td>
<td>Tenderness or pain on movement</td>
</tr>
<tr>
<td></td>
<td>Fixed flexion deformity</td>
</tr>
<tr>
<td>Knee–radiological</td>
<td>X-ray score</td>
</tr>
<tr>
<td>Knee–arthroscopic</td>
<td>Erythema</td>
</tr>
<tr>
<td></td>
<td>Synovial proliferation</td>
</tr>
<tr>
<td></td>
<td>Contact bleeding</td>
</tr>
<tr>
<td></td>
<td>Fibrin</td>
</tr>
<tr>
<td></td>
<td>Cartilage damage</td>
</tr>
</tbody>
</table>

FIG. 4 Comparison of lymphocytic infiltration with the arthroscopic estimate of articular cartilage damage

FIG. 5 Comparison of lymphocytic infiltration and knee x-ray score

FIG. 6 Comparison of synovial lining cell hyperplasia with arthroscopic estimate of cartilage damage

Discussion

This study failed to confirm any relationship between the histological pattern of rheumatoid synovitis and the extent of disease activity or joint damage. This failure may be interpreted in different ways. Quantification of clinical parameters of a disease is exceedingly difficult and most of the conventional methods of assessment which were used in this study are more useful for assessing the status of a single patient when seen on a number of occasions.
Lack of correlation of synovial histology with joint damage

Intensity of lighting, the pressure and temperature of the irrigating fluid, and the distance from the telescope tip to the observed surface. Despite these provisos, in experienced hands, arthroscopy provides considerable additional information, and in particular makes direct vision biopsies of involved areas available.

The biopsies were small and not comparable with the large amounts of synovium obtained at synovectomy. However, whenever possible multiple specimens were obtained from different parts of the joint so as to obtain representative samples. The changes of the synovium in RA are many and varied (Gardner, 1972) and it was disappointing that no correlations were found between the various features nor between the histological changes and the extent of the disease. It is still possible that with a larger series and perhaps with the use of more sophisticated techniques, such as electron microscopy and immunofluorescence, useful correlations giving some guidance to the likely prognosis of the disease may emerge.

It is also possible that there was some selection in the cases documented by Muirden and Mills (1971) in that the histological specimens were obtained at synovectomy so that only those patients suitable for this procedure were examined. In contrast, a broad spectrum of disease activity was included in the present study.

We wish to thank Mr. B. Amer and his fellow technicians for their meticulous histological assistance, and Mrs. O. Cumilffe who assisted with the arthroscopies. The study was performed with the aid of grants from the Arthritis and Rheumatism Council, the Association of Friends of the Royal National Hospital for Rheumatic Diseases in Bath, and the Boots Company Limited.

References

Lack of correlation of synovial histology with joint damage in rheumatoid arthritis.

D R Henderson, M I Jayson and C R Tribe

Ann Rheum Dis 1975 34: 7-11
doi: 10.1136/ard.34.1.7

Updated information and services can be found at:
http://ard.bmj.com/content/34/1/7

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/