Follow-up study of 100 cases of juvenile rheumatoid arthritis

K. M. GOEL AND ROBERT A. SHANKS
Royal Hospital for Sick Children, Glasgow

Although juvenile rheumatoid arthritis (JRA) was first described by Cornil (1864) and by Still (1897), the paediatrician often encounters aetiological, diagnostic, and prognostic problems.

The purpose of the present follow-up study is to review our experience of this disease in recent years in an attempt to add to our knowledge of its natural history and in particular to clarify the long-term prognosis of JRA and the factors affecting it. As far as we can ascertain the previous review articles in Britain on JRA were published by Colver (1937), Ansell and Bywaters (1959), and Schlesinger, Forsyth, White, Smellie, and Stroud (1961). Today most would agree that Still's disease is but one part of a larger spectrum of rheumatoid disease in adults and children (Bywaters, 1971; Calabro and Marchesano, 1967), although age at onset still seems to be an important factor in its presentation and evolution.

Patients and methods

We have studied JRA in 100 patients who were admitted to the Royal Hospital for Sick Children, Glasgow, between 1942 and 1970. All but five were examined personally, and full information was obtained from the paediatrician or general practitioner about the rest.

We have followed in our study the diagnostic criteria of Ansell and Bywaters (1959):

(1) The disease must begin before the age of 16 years.
(2) There should be inflammatory involvement of four or more joints for a minimum period of 3 months.
(3) If less than four joints are involved, biopsy of the synovial membrane should show histological changes compatible with rheumatoid arthritis.
(4) Other causes of arthritis should be excluded.

A definite diagnosis of JRA was made on admission in 88 patients who satisfied these criteria. There were another sixteen patients who at the time of their discharge from hospital were considered to be suffering from 'probable' juvenile rheumatoid arthritis. Twelve out of these sixteen cases were diagnosed on follow-up as definite cases of JRA, and in the remaining four the diagnosis still remains in the 'probable' category. In another six patients, initially diagnosed as cases of JRA, some other diagnosis has been reached on follow-up (systemic lupus erythematosus, acute lymphoblastic leukaemia, pulseless disease (Takayasu's disease), nail-patella-syndrome, transient synovitis of right hip, and traumatic arthritis of right knee). We have, therefore, excluded these ten cases and also patients with any form of connective tissue disease from this study.

We have chosen to divide our patients with juvenile rheumatoid arthritis (JRA) or 'Still's disease' into three major clinical sub-groups, according to the mode of onset of their symptoms. If the onset was acute with primarily systemic manifestation (fever, typical rash, splenomegaly, lymphadenopathy, leucocytosis, neck involvement, and arthralgia), the condition was termed 'early-onset' JRA as it tended to occur in younger children, in spite of an overlap in age-distribution with that termed 'late-onset' JRA. The distribution is shown in Fig. 1.

![Diagram of age at onset of symptoms in 100 patients with JRA]

The patients with early-onset JRA were usually toxic, listless, and irritable. This is the type which other authors have described as Still's disease or juvenile chronic polyarthritis (Calabro and Marchesano, 1968; Robinson, 1969; Ansell, 1972).

Those with insidious onset, polyarthritis, and little systemic involvement have been grouped as cases of 'late-onset' JRA (labelled 'Adult type JRA' by Calabro and Marchesano, 1968; Robinson, 1969), and those with single joint involvement as cases of 'monoarticular-onset' JRA. Among those with late-onset JRA is included a boy with Bruton's type hypogammaglobulinaemia who later developed arthritic symptoms. Synovial membrane biopsy was performed in all monoarticular-onset JRA patients except one, in whom, however, the Waaler-Rose test was positive. The joints involved in cases of monoarticular-onset were the knee in seven patients, the ankle in one, and the wrist in one. Monoarticular-onset JRA patients had few, if any, systemic manifestations. The incidence of each of the three types is shown in Table I (overleaf).
In our series of 100 cases under review, there were 52 girls and 48 boys. Duration of follow-up has ranged from over 20 years to less than 1 year, but only five have been observed for less than 1 year (Fig. 2). The age at onset varied from 9 months to 12 years 7 months. There were two patients who presented with unexplained fever. A positive family history of rheumatoid arthritis was elicited in the close relatives of twelve patients.

The functional status of the 91 surviving members of our series have been grouped as follows:

- **Grade I**: Helpless
- **Grade II**: Chair/bed existence
- **Grade III**: Moderate limitation of function
- **Grade IV**: Slight limitation of function
- **Grade V**: No limitation of function

Disease Course and Current Functional Status

We have described the course of the disease as intermittent when the periods of inactive disease were interspersed with a few weeks or months of flare-up of active disease. The monocyclic course was characterized by active disease lasting less than 2 years from the onset and terminating in remission without recurrence or sequelae; continuous or unremitting polyarthritis was used to indicate those in whom the active disease lasted for more than 2 years. The course of the disease and functional status of our 100 patients is shown in Table II.

The relationships of functional status, residual deformities, disease activity or inactivity, and mortality to the age at onset, to the mean duration of disease activity, and to the follow-up period from onset is shown in Table III (opposite).

Table I Type of onset of juvenile rheumatoid arthritis in 100 cases

<table>
<thead>
<tr>
<th>Type</th>
<th>No. of patients</th>
<th>Sex</th>
<th>Age range (yrs) (Mean)</th>
<th>No. of patients with systemic features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fever</td>
</tr>
<tr>
<td>Early-onset</td>
<td>44</td>
<td>Male</td>
<td>26 (9/12-11 (44)</td>
<td>27</td>
</tr>
<tr>
<td>Late-onset</td>
<td>47</td>
<td>Male</td>
<td>19 (2-12 3/12 (94)</td>
<td>14</td>
</tr>
<tr>
<td>Monoarticular-onset</td>
<td>9</td>
<td>Male</td>
<td>3 (9/12-10 8/12 (44)</td>
<td>3</td>
</tr>
</tbody>
</table>

| Total | 100 | 100 | 44 23 22 35 | | | |

Table II Relationship to mode of onset and course of disease

<table>
<thead>
<tr>
<th>Relationship</th>
<th>No. of patients</th>
<th>Current functional status</th>
<th>Clinical disease</th>
<th>Died</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V</td>
<td>IV</td>
<td>III</td>
</tr>
<tr>
<td>To mode of onset:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early-onset</td>
<td>44</td>
<td>22</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Late-onset</td>
<td>47</td>
<td>33</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Monoarticular-onset</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>To course:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocyclic</td>
<td>26</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intermittent</td>
<td>72</td>
<td>41</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Continuous</td>
<td>(Unremitting polyarthritis)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>63</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Table III Relationship between various parameters

<table>
<thead>
<tr>
<th>Relationship</th>
<th>No. of patients</th>
<th>Current functional status</th>
<th>Residual deformities</th>
<th>Clinical disease</th>
<th>Died</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V</td>
<td>IV</td>
<td>III</td>
<td>II</td>
</tr>
<tr>
<td>To age at onset (yrs):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–5</td>
<td>46</td>
<td>27</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6–9</td>
<td>30</td>
<td>20</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>10–15</td>
<td>24</td>
<td>16</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>To duration of disease (yrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mean)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 (5 months)</td>
<td>19</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1–12 (4)</td>
<td>81</td>
<td>49</td>
<td>12</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>To follow-up period from onset:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>>2</td>
<td>26</td>
<td>17</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>>5</td>
<td>32</td>
<td>19</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>>10</td>
<td>27</td>
<td>20</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>>20</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>63</td>
<td>12</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

Monocyclic course
Out of the 26 patients with monocyclic course, of which 22 are alive (Table II) the disease became inactive in fourteen cases in less than 6 months from onset, in five cases after 1 year from onset, and in three cases after 18 months from onset. Eleven of these patients are now adults. It is interesting that in none of the 22 patients there has been limitation of function (Grade V) or other sequelae. Relapses have not occurred in any of these patients over a period of observation ranging from 1 year to 27 years. The ultimate outcome, however, cannot be predicted in all of them because relapses can occur even after several years of remission.

Intermittent course
The intermittent type has been observed in 72 cases and the duration of activity has ranged from 1 year to 14 years (Table II). Of these five died and in nine cases the disease is currently active.

The course of the disease is highly unpredictable and there is no way to foretell which of these patients will relapse and when or whether the disease has completely burnt itself out. In this group 33 patients are now adults.

The poor functional status and residual deformities of several of these patients may be related to the duration and frequency of periods of activity.

Continuous course (unremitting polyarthritis)
The course of polyarthritis was unremitting in two female patients. In one patient the disease has been active for 8 years from the onset. In the other patient the active disease lasted for 14 years from onset but it has been quiescent over the past 6 years. The current functional status of these patients is Grade II and III respectively.

In our series, therefore, nine patients died and in ten cases the disease is still clinically active while in 81 the disease remains inactive.

Of the 91 surviving members there has been no limitation of function (Grade V) in 63 and they are at present living normal lives. None of our cases was classed as helpless (Grade I). In three patients with monoarticular-onset JRA, the disease progressed from a single joint to other joints. The parameters which have affected the functional status of our patients are shown in Tables II and III.

Residual deformities
These were seen in 36 cases. Spindling of fingers was present in 25, crippling deformities of fingers in seven, micrognathia in five, flexion contractures of elbows in fifteen, deformity of hips in three, and of the knees in one. Residual deformities were more common in early-onset than late-onset JRA (55 and 32.5 per cent. respectively). In general they were related to the duration of the disease (Table III). None of those whose disease remained monoarticular showed residual deformity. All five patients who have micrognathia show radiological changes of temporomandibular joint involvement, presumably responsible for the growth disturbance of the mandible.

Complications
In our series there were only three patients, two of early-onset and one of late-onset, who developed complications. Both patients with early-onset JRA developed secondary amyloidosis 6 and 7 years after diagnosis which was confirmed by rectal and liver biopsy. Of these one also developed unilateral iridocyclitis and cataract 4 years after the onset of disease. One patient with late-onset JRA developed
iridocyclitis, cataract, and band keratopathy 4 years after the onset of disease. In all three cases, the course of the disease was intermittent. None of the patients with monoarticular-onset JRA developed complications.

Deaths

In our series there were nine patients who died (Table IV), five within 1 year of the onset of disease. One died more than 10 years after the onset of the disease with amyloidosis, renal failure, and superimposed septicaemia. The mortality seems related to the age at onset and to the mode of onset of disease rather than to other parameters (Tables II and III). The main causes of mortality in our series have been septicaemia and hepatic necrosis.

The only case of late-onset JRA (Case No. 2 in Table IV) who died showed evidence at autopsy of chronic glomerulonephritis, hypertension, and renal failure. These findings cast some doubt on the diagnosis of juvenile rheumatoid arthritis, but repeated investigations in life failed to demonstrate the LE cell phenomenon nor did the post mortem findings show any feature suggestive of SLE. There were no deaths in the monoarticular-onset group. A post mortem examination was performed in all who died.

Table IV Details of nine patients with juvenile rheumatoid arthritis who died

<table>
<thead>
<tr>
<th>No.</th>
<th>Sex</th>
<th>Age at onset of disease (yrs)</th>
<th>Age at death (yrs)</th>
<th>Type</th>
<th>Course of disease</th>
<th>Cause of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>4 3/12</td>
<td>8</td>
<td>Early-onset</td>
<td>Intermittent</td>
<td>Acute hepatic necrosis</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>8 7/12</td>
<td>15</td>
<td>Late-onset</td>
<td>Intermittent</td>
<td>Chronic glomerulonephritis, left heart failure, hypertension, renal failure</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>8</td>
<td>16</td>
<td>Early-onset</td>
<td>Intermittent</td>
<td>Septicaemia (Candida albicans isolated from absceses in lung, liver, spleen and kidneys)</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>1 2/12</td>
<td>13</td>
<td>Early-onset (Waaler–Rose positive)</td>
<td>Intermittent</td>
<td>E. coli septicaemia, secondary amyloidosis, nephrosis, renal failure, pulmonary oedema</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>9</td>
<td>10</td>
<td>Early-onset</td>
<td>Intermittent</td>
<td>Widespread liver damage</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>3 7/12</td>
<td>4 1/12</td>
<td>Early-onset</td>
<td>Monocyclic</td>
<td>Bronchopneumonia</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>4 2/12</td>
<td>4 3/12</td>
<td>Early-onset</td>
<td>Monocyclic</td>
<td>Septicaemia, terminal pneumonia</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>2</td>
<td>2 9/12</td>
<td>Early-onset</td>
<td>Monocyclic</td>
<td>Acute periporal hepatic necrosis, myocarditis and pericarditis, terminal septicaemia, acute bronchopneumonia, oesophageal candidiasis</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>3 1/12</td>
<td>3 5/12</td>
<td>Early-onset (Waaler–Rose positive)</td>
<td>Monocyclic</td>
<td>Septicaemia (Strept. haemolyticus and Staph. pyogenes grown from splenic culture), polyserositis</td>
</tr>
</tbody>
</table>

RHEUMATOID FACTOR

The most consistently used test for rheumatoid factor at the time of admission of our patients was the sheep cell agglutination or Waaler–Rose test. The Waaler–Rose test was positive in six out of seventy patients (8·6 per cent.) in a titre of 1:64 or more. Out of these six seropositive patients, three were of early-onset, two of late-onset, and one of monoarticular-onset JRA. In four of these patients the age at the onset of symptoms was more than 10 years and in the other two less than 3 years. Two patients died, and of the remaining four the disease is quiescent in two and active in two.

The number is too small for conclusions to be drawn, but the fact that seropositivity was more frequent in children in whom the disease started in their later childhood accords with the findings of other authors (Sievers, Ahvonen, Aho, and Wager, 1963; Cassidy and Valkenburg, 1967; Zutshi, Ansell, Bywaters, Epstein, Holborow, and Reading, 1969). The Waaler–Rose and latex-fixation tests were performed at the follow-up examination in the four living cases and in all of them were found to be negative. All the patients who were seronegative at the time of diagnosis were retested (both Waaler–Rose and latex-fixation) at follow-up and none became seropositive. In addition immunoglobulins (IgG, IgA, and IgM) and β_2-C titre were determined and are the subject of another communication (Goel, Logan, Barnard, and Shanks, 1974).

This supports the statement of Scott (1952) and Bywaters, Carter, and Scott (1959) that there is no strict correlation between seropositivity and disease activity. In the latter series, in both early and late-onset JRA, some initially positive cases became negative on follow-up. This is contrary to the experience with adult rheumatoid arthritis where longer duration leads to a higher proportion of seropositivity (Brown, Bunim, and McEwen, 1949; Ball, 1952; Jacobson, Kammerer, Wolf, Epstein, and Heller, 1956).
Table V Comparison of our results of treatment with those of other series

<table>
<thead>
<tr>
<th>Series</th>
<th>Treatment</th>
<th>No. of patients</th>
<th>Died</th>
<th>State of disease</th>
<th>Functional status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansell and Bywaters (1959)</td>
<td>Steroid therapy</td>
<td>(216) Assessment in 63</td>
<td>9 (4)*</td>
<td>105 (50)</td>
<td>42 (44)</td>
</tr>
<tr>
<td>Schlesinger, Forsyth, White, Snellie, and Stroud (1961)</td>
<td>No steroid therapy</td>
<td>37</td>
<td>2 (5)</td>
<td>2 (5)</td>
<td>17 (27)</td>
</tr>
<tr>
<td>Lindbjerg (1964)</td>
<td>Steroid therapy</td>
<td>27</td>
<td>0</td>
<td>17 (62)</td>
<td>7 (25)</td>
</tr>
<tr>
<td>Present series</td>
<td>Steroid therapy</td>
<td>65</td>
<td>3 (4-6)</td>
<td>58 (89-4)</td>
<td>48 (74)</td>
</tr>
</tbody>
</table>

* Number in parentheses denotes the percentage of cases.

TREATMENT

Systemic steroids were given to 35 of the children in our series and they showed a poor remission rate and functional status as compared to 65 patients who were treated with conservative measures, consisting of rest in the acute phase with salicylates and later physiotherapy (Table V). Our results are in agreement with those of Ansell and Bywaters (1959) who also reported a poor remission rate in their patients treated with steroids. However, Schlesinger and others (1961) have commended the value of steroid therapy in JRA, although 37 patients in their series who were not given steroids also showed a high remission rate. Lindbjerg (1964) reported that corticosteroids did not cut short the duration of activity of the disease, prevent complications, or alter the long-term prognosis. In our series it appears that corticosteroids can initially produce a remarkable suppression of symptoms without influencing the natural remission rate or ultimate prognosis. Corticosteroids may, therefore, be desirable in those with systemic illness and especially in those with cardiac or ocular complications. Two patients in our series with acute iridocyclitis were treated with steroids with good results.

As regards other forms of therapy, there were five patients in our series who were treated with indomethacin, two with chrysotherapy, and one each with phenylbutazone, azathioprine, cyclophosphamide, chloroquine, and D-penicillamine without noticeable benefit. Therapeutic synovectomy of the knee joint was performed in two patients with disappointing results. In all these groups the numbers are too small for clear conclusions to be drawn.

Discussion

It would seem that the prognosis of juvenile rheumatoid arthritis may be to some extent predicted by its mode of onset (early, late, or monoarticular), the duration of disease activity, and the course of the disease. A positive rheumatoid factor and the presence of subcutaneous nodules also point to an unfavourable prognosis. Although an exact prognosis cannot be given in an individual case, the range of possibilities can be stated fairly clearly in the light of our experience.

However, remission can occur at any time, and unremitting and progressive disease that lasts into adulthood is, fortunately, uncommon although residual joint signs may persist. It is quite evident from our series that systemic manifestations, the number of complications, poor functional status, high mortality, and extensive residual deformities were more common in early-onset JRA. However, prognosis in all groups is encouraging, even although it seems better in late-onset and monoarticular-onset JRA.

The main causes of mortality in our series have been septicaemia and hepatic necrosis (Table IV). Seven of the nine patients who died were receiving steroids at the time of their infective episodes.

Cobb, Anderson, and Bauer (1953) have reported that 5 per cent. of the deaths in their series were caused by infections. An increased incidence of respiratory infections in rheumatoid arthritis has been reported (Kay, 1967; Walker, 1967). Huskisson and Dudley-Hart (1972) have recently emphasized the importance of this complication in adult rheumatoid arthritis. The observation that infection plays such a large part in causing death among patients with rheumatoid arthritis, shows the need for prompt administration of antibiotic and antifungal therapy and for especial vigilance during steroid therapy.

There were three deaths in this series due to hepatic necrosis which, as far as we could ascertain, was not caused by therapy. A post mortem examination did not reveal any obvious cause. On reviewing
the existing literature, we were unable to find any publications concerning hepatocellular necrosis in JRA as a cause of death, although massive hepato-
megaly associated with abnormal liver function in JRA has been reported (Schaller, Beckwith, and Wedgwood, 1970). However, Lefkovits and Farrow (1955) reported on the histological examination of the liver tissue in fifteen patients with adult rheu-
matoid arthritis which they have termed 'non-
specific reactive hepatitis'.

Iridocyclitis and cataract developed in 2 per cent.
of our patients 4 years after the onset of disease.

Iritis is more common in children than in adults
with rheumatoid arthritis; the figures for iritis in
children range from 5-5 per cent. upwards, and from
3-3 per cent. to 4-7 per cent. in patients with adult
rheumatoid arthritis (Sorsby and Gormaz, 1946;
Godtfredsen, 1949; Stanworth and Sharp, 1956;
Smiley, May, and Bywaters, 1957; Schlesinger and

Regular ophthalmological examinations with the
slit lamp, the only means of early detection, should
therefore be made, preferably every 6 months, in all
patients with juvenile rheumatoid arthritis.

Rheumatoid factor has been found far less often
in children than in adults with rheumatoid arthritis.
Zutshi and others (1969) have reported a positive
Waaler–Rose test in 15 per cent. of their patients
with JRA and a higher incidence in patients with
late-onset JRA. This contrasts with the 75 per cent.
of adult patients and the 4 per cent. in the normal
population who have a positive Waaler–Rose test
(Hill and Greenbury, 1965; Alexander and McCarth,
1966). However, a follow-up study of a population
sample (Ball and Lawrene, 1963) has shown that
individuals with positive agglutination tests are
more likely to develop rheumatoid arthritis than
individuals with negative tests. Various authors have
pointed out that a persistently negative or a low titre
rheumatoid factor is a good prognostic sign and,
while in many cases positive and negative results may
be found in the same patients, a persisting high titre
suggests a poor prognosis (Schubar, Calkins, and
Cohen, 1960; Kellgren and O'Brien, 1962; Ragan
and Farrington, 1962).

Our own figures are lower (little more than the
normal adult population, but the incidence of
rheumatoid factor increases with age) and shows a
roughly equal distribution in all clinical groups.
However, when the rheumatoid factor is present it
may be useful in assessing prognosis. In our series,
of the six seropositive patients, two died, in two cases
the disease is currently active, and in the other two
it is inactive. It is noteworthy that, of the five patients
with subcutaneous nodules, only two were sero-
positive. In adults, Jacobson and others (1956)
found that well over 90 per cent. of their patients
with nodules gave positive results.

Calabro (1966) reported that rheumatoid nodules
are less common in children than in adults, occurring
in about 6 per cent. of his patients. In the series of
Schlesinger and others (1961), rheumatoid nodules
were noted in 7 per cent. of patients. Those with
rheumatoid arthritis who also have subcutaneous
nodules, whether children or adults, often do less
well than those without nodules (Short, Bauer, and
Reynolds, 1957; Duthie, Brown, Truelove, Baragar,
and Lawrie, 1964; Cohen, Eaton, Feingold, Gellis,

Conclusions

The prognosis of JRA of all clinical types is
probably better than has been thought. Adverse
prognostic factors are generalized systemic mani-
festations and, with early-onset, the duration and
frequency of periods of activity, subcutaneous
nodules, positive rheumatoid factor, and a continuous
course. There are features in the presentation and
evolution of the disease, whether of early or late-onset,
which make it difficult to adopt the current classi-
fication of adult rheumatoid into seropositive and
seronegative types, each with its separate clinical
pattern and differing complications. There would
appear to be differences between juvenile and adult
rheumatoid disease which may prove as important
as their similarities.

Summary

One hundred cases of juvenile rheumatoid arthritis
(JRA) have been reviewed; 44 were of early-onset,
47 of late-onset, and nine of monoarticular-onset.
81 patients are currently in remission while ten
continue to have active rheumatoid disease. Nine
died.

The complication of secondary amyloidosis
occurred in two patients and unilateral iridocyclitis
and cataract in two patients, one of whom also had
band keratopathy.

The prognosis of JRA may be to some extent
predicted by its mode of onset, the duration of
disease activity, the course of the disease, the presence
of rheumatoid nodules, and a positive rheumatoid
factor. Steroids, although initially effective, had no
favourable effect on the long-term prognosis of JRA
and carried long- and short-term hazards.

This review reveals a favourable prognosis for the
disease in general, but it seems likely that the long-
term prognosis is better in late-onset and mono-
articular-onset JRA.

There are differences between juvenile and adult
rheumatoid disease which require further study.

We are very grateful to our colleagues for allowing us
to study patients under their care. The rheumatoid serology
has been done by the laboratories of the Western Infirmary,
Glasgow.
Follow-up study of 100 cases of juvenile rheumatoid arthritis

References

BALL, J. (1952) Ann. rheum. Dis., 11, 97 (Sheep cell agglutination test for rheumatoid arthritis)

AND LAWRENCE, J. S. (1963) Ibid., 22, 311 (The relationship of rheumatoid serum factor to rheumatoid arthritis)

SCOTT, F. E. T. (1952) Lancet, 1, 392 (The differential sheep-cell agglutination test in rheumatoid arthritis)

SIEVERS, K., AHVONEN, P., AHO, K., AND WAGER, O. (1963) Rheumatism, 19, 88 (Serological patterns in juvenile rheumatoid arthritis)

STILL, G. F. (1897) Med.-chir. Trans., 80, 47 (On a form of chronic joint disease in children)

Follow-up study of 100 cases of juvenile rheumatoid arthritis.

K M Goel and R A Shanks

Ann Rheum Dis 1974 33: 25-31
doi: 10.1136/ard.33.1.25

Updated information and services can be found at:
http://ard.bmj.com/content/33/1/25.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/