Studies of a popliteal synovial fistula

R. M. BENNETT,* G. R. V. HUGHES, E. G. L. BYWATERS, AND P. J. L. HOLT
Rheumatology Unit, Department of Medicine, Royal Postgraduate Medical School, London, W.12.

Synovial fistulae occur only rarely as a spontaneous complication of rheumatoid arthritis, usually in relation to the small joints of the hands and feet (Bywaters, 1953; Rosin and Toghill, 1963). We are unaware of synovial fistulae in relation to a knee joint having been previously described either as a spontaneous occurrence or as a complication of surgery. The case recorded here afforded a unique opportunity to study synovial fluid output in terms of diurnal volume and composition, including blood loss.

Case report

A 51-year-old woman previously in good health, first presented at another hospital with pain in the left forefoot. Over the next 2 years she developed pain and swelling in the left wrist, the right knee, and the small joints of both hands. Rheumatoid arthritis was diagnosed and she was treated with phenylbutazone, indomethacin suppositories, and gold injections.

A tense swelling developed behind the right knee 6 months later. She was referred to a general surgeon and an initial diagnosis of fibrosarcoma was made. However, at operation, a synovial popliteal cyst was found and removed. After this, synovial fluid began to leak from the lower end of the wound and during the next 2 months a fistulous track developed (Fig. 1).

At this stage the patient was referred to the Rheumatology Unit at Hammersmith Hospital.

Examination

She was a pale woman with rheumatoid deformities. Nodules and vasculitic lesions were absent. There was swelling of both knees with a small effusion on the left side. Synovial fluid leaked from a fistula into the lower central part of the right popliteal fossa. The lymph nodes in the groin, axillae, and neck were moderately and equally enlarged and the spleen was palpable two fingers breadths below the costal margin.

Laboratory investigations

Hb 7·2 g./100 ml. Red blood cells 3·34 × 10⁶/cu.mm. Reticulocytes 2 per cent., White blood cells 5,800/cu.mm. Mean corpuscular haemoglobin concentration 31 per cent. Platelets 660 × 10³/cu.mm. Erythrocyte sedimentation rate 76 mm./hr (Westergren).

Blood film showed anisocytosis, poikilocytosis, and polychromasia.

Accepted for publication April 21, 1972

* Present address: Dr. R. M. Bennett, Department of Medicine, University of Chicago, 950 E 59th Street, Chicago, Illinois 60637, U.S.A.
source of the leaking fluid. A combined synovectomy and closure of the fistula was therefore planned. Before this operation was performed it was possible to study the patient in greater detail.

Results

SYNOVIAL FLUID VOLUMES
By applying an ileostomy bag over the fistula it was possible to obtain accurately timed collections of synovial fluid. The bag was changed at 06.00, 12.00, and 18.00 hours. The total volume of fluid was measured and kept in sterile containers at 4°C. Table I shows the daily and diurnal fluctuation in synovial fluid output.

Table I Diurnal synovial fluid collected (ml.)

<table>
<thead>
<tr>
<th>Day</th>
<th>Night</th>
<th>Day</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>0</td>
<td>107</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>77</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>15</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>65</td>
<td>90</td>
<td>175</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>120</td>
<td>38</td>
<td>198</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>35</td>
<td>113</td>
</tr>
<tr>
<td>11</td>
<td>73</td>
<td>35</td>
<td>118</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>0</td>
<td>36</td>
</tr>
</tbody>
</table>

Three features of particular interest became apparent:
1. The specimen of synovial fluid produced during the night was invariably clear but as soon as the patient started walking around it became uniformly blood-stained (Fig. 2).
2. The nocturnal resting volumes (18.00 to 6.00 hrs) were always less than the daytime collections.
3. On Day 8, when only 11 ml. of synovial fluid were collected, the knee became very painful and swollen, but this was dramatically alleviated the next day when 198 ml. of fluid were collected.

BIOCHEMICAL COMPOSITION
A comparison was made of various biochemical values in synovial fluid and serum (Table II). Values for samples taken on different days are shown to give some idea of the variability encountered. As is usually found, the smaller molecular weight substances had similar values in serum and synovial fluid, while the larger molecular weight substances were found in a reduced concentration in the synovial fluid.

RADIOPHGRAPHS
An arthrogram was performed by putting 20 ml. 45 per cent. Hypaque into the suprapatellar bursa on the right side. After the patient had walked for 5 minutes the Hypaque was seen outlining the joint and also reaching the skin surface in the popliteal fossa. Later Hypaque under pressure was instilled into the fistula: only the fistulous track was visualized, no contrast material passed forward into the knee joint.
BACTERIOLOGY
The fluid from the fistula repeatedly grew coagulase-positive Staphylococcus aureus, but the patient remained afebrile and the joint showed no signs of infection. Synovial fluid taken directly from the right knee by needle puncture was sterile. The growth of various laboratory strains of Staphylococcus aureus showed inhibition when incubated with undiluted fluid, but the strain isolated from the synovial fistula was not inhibited.

HISTOLOGY
The popliteal cyst from the first operation was lined with granulation tissue and dense fibrous tissue attached to muscle. In one area there were invaginations in the fibrous wall filled with granulation tissue and large foamy macrophages. The material within the cavity consisted of polymorphonuclear leucocytes and fibrin, the appearance being that of an infected Baker's cyst. The second synovectomy specimen showed a proliferation of synovial cells and a chronic inflammatory infiltrate with both plasma cells and lymphocytes characteristic of rheumatoid arthritis; no organisms were found.

ISOTOPIC STUDIES
Further investigation of the anaemia was undertaken using Fe59-labelled transferrin to study iron kinetics and Cr51-labelled red blood cells to follow red blood cell survival (Dacie and Lewis, 1963). Surface counting for Fe59 and Cr51 was performed over the sacrum, liver, spleen, heart, and both knees (Figs 3 and 4). The minimal count for Cr51 was at least 1,000 above background (giving a 6-5 per cent. counting error) and for Fe59 was at least 2,000 (giving a 4-5 per cent. counting error). The surface counting results are expressed as a percentage of the count at each site at about 5 minutes after injection. The results are shown in Table III (with normal values calculated for a corresponding height and weight). It can be seen that the anaemia is partly dilutional because of increased plasma volume. The red cell life span was at the lower limit of normal and there was sequestration of red blood cells in the liver and spleen. The plasma clearance of transferrin-bound iron was very rapid, going mainly to the bone marrow (see trace of sacrum, Fig. 3) and there was a 100 per cent incorporation into red blood cells by 7 days. The Fe59 counts over the knees showed a 100 per cent. increase in the first 24 hours followed by a decline over the next 15 days. The Cr51 counts over each knee showed an erratic pattern.

FOLLOW-UP RESULTS
6 months after closure of the fistula the serum albumin had risen to 3-6 g./ml., but serum values for haemoglobin, platelets, and serum iron all remained unchanged compared to the preoperative levels.

Discussion
NATURE OF FISTULA
The development of a fistula after removal of a
Baker’s cyst without an accompanying synovectomy, might be expected to occur since the source of exudate is still present and the flow of fluid is from the joint cavity into the cyst. Three pieces of evidence support the concept of this unidirectional flow of synovial fluid. Hypaque injected intra-articularly readily appeared in the fistula but, when injected under pressure into the fistula, did not gain access to the joint cavity. A similar unidirectional flow was found in several patients, with popliteal cysts, on arthrography by Hall and Scott (1966). Pressure recordings in Baker’s cysts (Jayson and Dixon, 1970a) have shown increased pressure in the cyst compared with the joint cavity and pressure fluctuation in the cyst on tensing the quadriceps but no corresponding increase in the intra-articular pressure on pressing the cyst. Indeed, the pressure in the knee joint with quadriceps contraction may rise, in patients with effusion, well over arterial systolic pressure (Caughey and Bywaters, 1963). Finally, post mortem studies show that the communication between the knee joint and popliteal cyst is usually between the heads of the gastrocnemius and has a valve-like structure, allowing fluid to flow in only one direction (Taylor, 1971).

Table III Ferrokinetic and chromium survival studies

<table>
<thead>
<tr>
<th>Values estimated</th>
<th>Patient’s</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total blood volume (ml.)</td>
<td>6,569</td>
<td>3,000–4,400</td>
</tr>
<tr>
<td>Plasma volume (ml.)</td>
<td>5,074</td>
<td>2,000–2,750</td>
</tr>
<tr>
<td>Red cell volume (ml.)</td>
<td>1,495</td>
<td>1,210–1,595</td>
</tr>
<tr>
<td>T½ Cr⁵¹ (days)</td>
<td>25</td>
<td>25–32</td>
</tr>
<tr>
<td>T½ Fe⁵⁹ plasma clearance (min.)</td>
<td>29</td>
<td>60–140</td>
</tr>
<tr>
<td>Plasma iron turnover (ug./100 ml./day)</td>
<td>0.23</td>
<td>0.38–0.77</td>
</tr>
<tr>
<td>Synovial fluid blood loss (ml./100 ml.)</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Iron utilization by RBCs 100 per cent./ 70 to 80 per cent./ 5 days</td>
<td>10 to 14 days</td>
<td></td>
</tr>
</tbody>
</table>

The finding that the synovial fluid was blood-stained after exertion is not unexpected when one considers the hypertrophy and increased vascularity of rheumatoid synovium. Although such a phenomenon has often been postulated, its actual occurrence has not, to the best of our knowledge, been previously demonstrated. The fluctuating Cr⁵¹ surface counting trace indicates that intermittent bleeding was also occurring into the left knee, i.e. in the absence of a fistula. Synovial fluid from inflamed rheumatoid joints seldom contains grossly visible blood (assuming an atraumatic puncture), probably through the extremely effective phagocytosis of synovial membrane, but there are always some red blood cells microscopically.

The anaemia

Of major importance in this patient’s anaemia is a greatly increased plasma volume in the presence of a normal red cell mass (Table III) leading to a dilutional anaemia. This cause of anaemia is well documented in rheumatoid arthritis; it is thought to be the result of the increased plasma volume ‘trapped’ within an enlarged spleen (Prankerd, 1963) and probably plays a major role in the anaemia of Felty’s syndrome (Blendis, Ansell, Lloyd-Jones, Hamilton, and Williams, 1970). In addition, the surface counting results indicate sequestration of red cells within the spleen with subsequent breakdown and storage of their iron.

It is interesting that the patient had a persistently increased platelet count which is always suggestive of chronic bleeding. Her faecal occult blood tests were always negative but there was persistent escape of blood and iron from the fistula. We estimate that, during the 7 months before closure of the fistula, 450 ml. of blood were lost. If a similar amount of blood was lost from the circulation into the left knee (as suggested by the Cr⁵¹ counting) the patient probably lost nearly a litre of blood over the course of 7 months, into her knees alone. An increased platelet count in the absence of obvious bleeding is fairly common in rheumatoid patients (personal observation) and we suggest this could result partly from chronic intra-articular bleeding, producing an occult blood loss, in the true sense of the word, as the red cells are rapidly phagocytosed and the iron sequestered into the synovial membrane.

It has been proposed (Muirden, 1970) that deposition of iron in the synovial membrane and its subsequent nonavailability for erythropoiesis is an important contributory factor in the anaemia of rheumatoid arthritis. The surface counting results in this patient suggest that synovial iron deposition is only a reflection on a small scale of a generally increased sequestration of iron from effete red blood cells by a hyperactive reticuloendothelial system.

The rise in the serum albumin 6 months after closure of the fistula (1.4 to 3.6 g./ml.) suggests that the initial low value was partly dependent upon loss
through the fistula. We estimate that before the fistula was closed she had lost approximately 220 g. albumin by this route. The failure of haemoglobin, platelets, and serum iron to change significantly indicates either that the loss of blood from the fistula was insignificant or that the status quo was being maintained by continuing intra-articular bleeding and sequestration.

Summary
A patient with rheumatoid arthritis developed a synovial fistula after the removal of a Baker's cyst. Diurnal variations in synovial fluid output and content were recorded and the resulting loss of blood and other substances is discussed in relation to the patient’s blood picture and serum biochemical values.

We thank Mr. W. H. Stephenson (Orthopaedics), Dr. Slavin (Biochemistry Department), and members of the Bacteriology and Haematology Department for their assistance. This work was supported in part by the Arthritis and Rheumatism Council.

References
Studies of a popliteal synovial fistula.

R M Bennett, G R Hughes, E G Bywaters and P J Holt

Ann Rheum Dis 1972 31: 482-486
doi: 10.1136/ard.31.6.482

Updated information and services can be found at:
http://ard.bmj.com/content/31/6/482.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/