Article Text

PDF

A9.7 Loss of PTEN in Myeloid Cells Controls Inflammatory Bone Destruction by Regulating the Osteoclastogenic Potential of Myeloid Cells
  1. Stephan Blüml1,
  2. Gernot Schabbauer2,
  3. Martin Friedrich2,
  4. Antonia Puchner1,
  5. Victoria Saferding1,
  6. Emine Sahin2,
  7. Tobias Lohmeyer2,
  8. Birgit Niederreiter1,
  9. Josef Smolen1,
  10. Kurt Redlich1
  1. 1Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria
  2. 2Institute for Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University Vienna, A-1090 Vienna, Austria
  3. 3Institute of Immunology, Biomedical Sciences Research Center (BSRC) “Alexander Fleming,” Vari, Greece

Abstract

Background Local bone destruction in rheumatoid arthritis, psoriasis arthritis or ankylosing spondylitis is a serious health burden and the major cause of disability and severely reduced quality of life in these diseases. This damage to the bony structures is exclusively mediated by a special cell type, the osteoclast (OC). Therefore, it is important to understand factors and pathways regulating the generation of OCs under inflammatory conditions. As PTEN is a lipid phosphatase and one of the main antagonists of the PI3-kinase, we analysed the impact of the PI3-Kinase/PTEN axis on OC generation and bone biology in an animal model of inflammatory bone loss.

Methods We induced osteoclastogenesis in wt and PTEN deficient bone marrow cells and measured the generation of OCs, their resorptive capacity and induction of OC differentiation markers in vitro. Moreover, we analysed mice with a monocyte/macrophage-specific deletion of PTEN (myeloid specific PTEN-/-) by bone histomorphometry and crossed these mice into hTNFtg animals.

Results We show that myeloid specific PTEN-/- mice have increased osteoclastogenesis in vitro and in vivo when compared to wild-type animals. However, under non-inflammatory conditions, enhanced osteoclastogenesis did not result in systemic bone loss in vivo. However, when we crossed myeloid specific PTEN-/- into hTNFtg mice we found significantly decreased grip strength scores in myeloid specific PTEN-/-/hTNFtg mice compared to wt hTNFtg mice. Joint swelling scores, however, were not different between both groups. In line, myeloid specific PTEN-/-/hTNFtg mice displayed enhanced local bone destruction as well as OC formation in the inflamed joints, whereas the extent of synovial inflammation was not different between the groups. Analysis of the synovial membranes of wt and myeloid specific PTEN-/- animals revealed similar relative compositions of the cellular infiltrate including macrophages, which serve as OC precursors. This suggests that increased capacity for osteoclastogenic differentiation rather than enhanced recruitment of precursor cells is responsible for the enhanced local generation of OCs.

Conclusions Taken together, these data demonstrate that sustained PI3-Kinase activity in myeloid cells specifically elevated the osteoclastogenic potential of these cells, leading to enhanced inflammatory local bone destruction. Therefore, targeting the PI3-Kinase pathway therapeutically may be especially useful for the prevention of structural joint damage.

Statistics from Altmetric.com

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.