Ann Rheum Dis 67:288-295 doi:10.1136/ard.2007.076620
  • Extended report

Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model

  1. D Mrugala1,
  2. C Bony1,
  3. N Neves2,
  4. L Caillot3,
  5. S Fabre4,
  6. D Moukoko5,
  7. C Jorgensen1,
  8. D Noël1
  1. 1
    Inserm, U 844, Montpellier, France
  2. 2
    3B’s Research Group, Department of Polymer Engineering, University of Minho, Braga, Portugal
  3. 3
    ABCYS, Paris, France
  4. 4
    Service d’Immuno-Rhumatologie Clinique, Hôpital Lapeyronie, Montpellier, France
  5. 5
    Service de Chirurgie Orthopédique, Hôpital Lapeyronie, Montpellier, France
  1. D Noël, Inserm U 844, INM, Hôpital Saint-Eloi, 34091 Montpellier, France; noel{at}
  • Accepted 10 July 2007
  • Published Online First 20 July 2007


Background: Multipotent mesenchymal stromal cells (MSC) are of particular interest for their potential clinical use in cartilage engineering, but a consistent model is missing in large animals.

Objective: In the absence of any detailed study reporting a complete characterisation of the mesenchymal cells isolated from sheep bone marrow, we fully characterised adherent stromal cells and developed a pre-clinical model of cartilage engineering by implantation of autologous MSC in the Merinos sheep.

Methods: Ovine MSC (oMSC) were isolated from bone marrow, expanded and further characterised according to the recently proposed definition of the MSC. The experimental model consists of partial-thickness lesions created in the inner part of the patellae of the posterior legs. Lesions were filled with oMSC with or without chitosan, with or without transforming growth factor (TGF)β-3, in a fibrin clot.

Results: oMSC were shown to display the three main characteristics of MSC: adherence to plastic, phenotypic profile (positive for CD44, CD105, vimentin and negative for CD34 and CD45), and trilineage differentiation potential. We also report two other important functional characteristics of MSC: support of long-term haematopoiesis and immunosuppressive capacity. In vivo, 2 months after implantation the histological analysis revealed chondrocyte-like cells surrounded by a hyaline-like cartilaginous matrix that was integrated to the host cartilage when oMSC were combined with chitosan and TGFβ-3.

Conclusions: This study provides for the first time a strong characterisation of oMSC and establishes the basis for a model of cartilage engineering in a large animal.


  • CJ and DN contributed equally to this work.

  • Funding: This work was supported by the European Community.

  • Competing interests: None declared.