Article Text

PDF
Synthesis and release of human cartilage matrix proteoglycans are differently regulated by nitric oxide and prostaglandin-E2
  1. S C Mastbergen,
  2. J W J Bijlsma,
  3. F P J G Lafeber
  1. Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
  1. Simon C Mastbergen, University Medical Center Utrecht, Room F02.127, PO Box 85500, 3508GA Utrecht, The Netherlands; s.mastbergen{at}umcutrecht.nl

Abstract

Objectives: Recent studies showed beneficial effects of COX-2 inhibition on proteoglycan turnover of both IL-1β/tumour necrosis factor α (TNFα) damaged cartilage and of osteoarthritic cartilage. Although proteoglycan release and content were normalised, proteoglycan synthesis was only partially influenced. Prostaglandin-E2 is the main product formed by COX-2. We therefore evaluate the role of prostaglandin-E2 in relation to nitric oxide in disturbing cartilage proteoglycan turnover.

Methods: Human healthy cartilage, alone or in the presence of IL-1β+TNFα, was cultured for 7 days with or without prostaglandin-E2 or the selective COX-2 inhibitor (celecoxib 10 μM). Changes in cartilage matrix proteoglycan turnover, levels of prostaglandin-E2 and nitric oxide were determined.

Results: Proteoglycan synthesis and release of the cartilage were not affected by prostaglandin-E2 alone. Addition of IL-1β+TNFα to healthy cartilage resulted in inhibition of proteoglycan synthesis and increase in proteoglycan release. When prostaglandin-E2 was added, in addition to IL-1β+TNFα, proteoglycan release increased further, but proteoglycan synthesis was not influenced further. Addition of a selective COX-2 inhibitor to the IL-1β+TNFα treated cartilage inhibited the enhanced prostaglandin-E2 production and almost completely normalised proteoglycan release, whereas synthesis remained unaffected. Also, the enhanced NO-levels remained elevated. Prostaglandin-E2 levels correlated significantly with proteoglycan release, whereas NO levels correlated significantly with proteoglycan synthesis.

Conclusion: The present results suggest involvement of prostaglandin-E2 in enhanced cartilage proteoglycan release but not synthesis, although healthy cartilage has to be sensitised by IL-1β+tumour necrosis factor α (TNFα). IL-1β+TNFα induced NO seems to be involved in inhibition of proteoglycan synthesis, independent of prostaglandin-E2, and thus seems insensitive to regulation by (selective) COX-2 inhibitors.

Statistics from Altmetric.com

Footnotes

  • Competing interests: None.

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.