Article Text

Download PDFPDF
B cell signalling as therapeutic target
  1. R H Carter
  1. Correspondence to:
    R H Carter
    University of Alabama at Birmingham, Birmingham, AL, USA; rcarteruab.edu

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Biological therapy holds the promise of specificity of intervention. Recent progress in development of such therapies has proved that rational targeting can lead to clinical benefit. B cells pose an attractive target in autoimmunity. Approaches currently being tested lead to depletion of B cells or at least circulating B cells.1–3 Such therapies appear remarkably benign, but the effects of repeated depletion, which might be required to fight autoimmune disease, have yet to be defined. Fundamental studies have uncovered pathways of B cell activation. This work opens the possibility of targeting activated B cells. This review asks how we might approach therapeutic manipulation of activated B cells. The underlying assumption is that it is the activated B cells that are important in pathophysiology of autoimmune disease. The activation pathways lead to the differentiation of self-reactive B cells to plasmablasts that produce the autoantibodies, which may be directly pathogenic.4 In addition, activation of B cells leads to the expression of ligands on B cells that bind costimulatory receptors on T cells.5 Along with presentation of self-derived peptides on surface major histocompatibility complex class II molecules, this drives activation of autoimmune T cells.6 Targeting activated B cells would eliminate both contributions of B cells to disease without depletion of resting memory B cells acquired from previous infection or immunisation.

The white pulp in the spleen is organised around the terminal branches of the arterioles. The periarteriolar lymphoid sheath (PALS), which surrounds the arteriole, is rich in T cells. Budding eccentrically off the PALS are collections of B cells, which form the follicular mantle. This is bounded by the marginal sinuses, around which are abundant macrophages. The marginal zone is a band of B cells and macrophages lying between the marginal sinuses and the red pulp. These structures are …

View Full Text