Systemic lupus erythematosus and thyrotoxicosis: a hitherto little recognised association

S RODRIGUÉ, H LABORDE, AND P M CATOGGIO*

From the Rheumatology Section, 6th Chair of Internal Medicine, University Hospital, Buenos Aires, Argentina

SUMMARY Six patients are reported in whom systemic lupus erythematosus (SLE) and thyrotoxicosis coexisted. All had four or more American Rheumatism Association criteria (1982) for the diagnosis of SLE and had clinical manifestations and function test results characteristic of hyperthyroidism (except for one who had been thyroidectomised previously). In three patients the diagnosis of hyperthyroidism preceded that of SLE, in two patients both diseases began simultaneously, and only in one was the diagnosis of thyrotoxicosis made after that of SLE. It is suggested that hyperthyroidism associated with SLE may be a form of presentation of thyroiditis. This association may pass unnoticed because of the similarity of some clinical manifestations.

Key words: hyperthyroidism, thyroiditis, Graves' disease, autoimmune diseases.

Coexistence of immune thyroid dysfunction and inflammatory connective tissue disease has been the subject of several reports during the past three decades.1-5 Thus Hashimoto's thyroiditis has been described in association with rheumatoid arthritis,6 systemic lupus erythematosus (SLE),3 7-10 polymyositis-dermatomyositis,11 scleroderma,12 13 and Sjögren's syndrome.14 In addition, antithyroid antibodies are frequently found in different connective tissue diseases1 2 as well as in other diseases thought to have an immune basis, even in the absence of clinical manifestations of thyroid disease.15

Despite the acknowledged autoimmune mechanism in Graves' disease its clinical association with connective tissue disease has not been clearly established. We describe six patients in whom SLE coexisted with clinical and laboratory manifestations of thyrotoxicosis, typical of Graves' disease.

Patients and methods

Five of 93 patients with SLE followed up by our group since 1980, who showed manifestations of thyrotoxicosis, together with a sixth patient with coexistence of both diseases who had been seen in 1973, were included in the study.

All patients were women aged 23 to 41 years and had at least four American Rheumatism association criteria (1982) for the diagnosis of SLE. In all six patients antinuclear antibodies were looked for by indirect immunofluorescence using rat liver as substrate. Antibodies to native DNA were also sought by passive haemagglutination or complement fixation, or both. Venereal Disease Research Laboratory tests and lupus erythematosus cells were done in all patients.

Five of the six patients had symptoms and signs of hyperthyroidism: diffuse goitre, weight loss,ocular signs, heat intolerance, loss of strength, and other manifestations. A thyroid scan was carried out and 131I uptake curves constructed. The sixth patient had been thyroidectomised at the time of observation and was euthyroid. When possible, antithyroid antibodies were sought by haemagglutination, and serum concentrations of triiodothyronine and thyroxine by radioimmunoassay.

Results

Features of SLE
Lupus manifestations were varied and of differing severity (Table 1). Two patients died: one, owing to renal failure related to active glomerulonephritis, and the other, with central nervous system involvement. In two patients the disease had a moderate course without overt renal involvement and with a good response to corticosteroid treatment. The two
Table 1 Features of systemic lupus erythematosus

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Clinical and laboratory findings</th>
<th>Serum findings</th>
<th>1982 ARA criteria score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ANA*</td>
<td>anti-DNA</td>
</tr>
<tr>
<td>1</td>
<td>Rash, photosensibility, arthritis, leucopenia, nephritis</td>
<td>+†</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Arthritis, pleuritis, pericarditis, leucopenia</td>
<td>1/300</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Oral ulcers, pleuritis, pericarditis, arthritis, renal and CNS* disease</td>
<td>1/600</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Arthritis, pleuritis, pericarditis, nephritis</td>
<td>1/400</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Oral ulcers, arthritis, pleuritis, pericarditis, nephritis, leucopenia</td>
<td>1/3200</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Rash, photosensibility, arthritis, nephritis</td>
<td>1/400</td>
<td>+</td>
</tr>
</tbody>
</table>

*ANA=antinuclear antibodies; VDRL=Venereal Disease Research Laboratory test; LE=lupus erythematosus; CNS=central nervous system.
†Titre unknown.

remaining patients, with diffuse proliferative glomerulonephritis, required immunosuppressive treatment. No particular clinical features were common to these patients (Table 1). All had antinuclear antibodies and, in four, anti-DNA antibodies were found.

FEATURES OF THYROTOXICOSIS

In the five patients in whom a thyroid scan was performed diffuse goitre was confirmed and 131I uptake curves were abnormal (Table 2). Four patients had been adequately controlled with antithyroid drugs (methylmercaptoimidazole) and one patient had recently been given β blockers.

ONSET OF INDIVIDUAL DISEASE

In three patients the hyperthyroidism preceded by five years, three years, and six months the onset of lupus manifestations. One of these patients had undergone thyroidectomy with a diagnosis of Graves' disease before admission to hospital. Even though the results of previous studies were not available, typical unilateral exophthalmus was present during the period of our observation until death (owing to central nervous system involvement related to SLE). In two patients both diseases began simultaneously and their coexistence was not diagnosed earlier owing to overlap of clinical manifestations: fever, weight loss, tachycardia, muscle weakness, and tenderness. In only one patient the diagnosis of thyrotoxicosis was made nine years after that of SLE.

Discussion

The association of diffuse goitre with normal or low thyroid function in SLE is well recognised.3 4 The coexistence of SLE and thyrotoxicosis is less familiar, however.16-19 The clinical association between

Table 2 Features of thyroid disorders

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Clinical thyrotoxicosis</th>
<th>Exophthalmus</th>
<th>Diffuse goitre</th>
<th>Thyroid scan*</th>
<th>131I uptake (%)†</th>
<th>T3‡ (nmol/l)</th>
<th>T4‡ (nmol/l)</th>
<th>Antithyroid antibodies</th>
<th>AT‡</th>
<th>AMF‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>37</td>
<td>90</td>
<td>93</td>
<td>ND‡</td>
<td>ND‡</td>
<td>1/100</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>14</td>
<td>95</td>
<td>90</td>
<td>ND‡</td>
<td>ND‡</td>
<td>ND‡</td>
</tr>
<tr>
<td>3</td>
<td>§</td>
<td>§</td>
<td>§</td>
<td>§</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>ND‡</td>
<td>ND‡</td>
<td>ND‡</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>35</td>
<td>73</td>
<td>70</td>
<td>ND‡</td>
<td>ND‡</td>
<td>ND‡</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>24</td>
<td>66</td>
<td>69</td>
<td>3·6</td>
<td>257</td>
<td>1/100</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>14</td>
<td>53</td>
<td>51</td>
<td>11·6</td>
<td>257</td>
<td>1/12000</td>
</tr>
</tbody>
</table>

*Large, diffuse distribution.
†Normal value of 131I uptake is 8% at one hour, <35% at 24 hours, and <32% at 48 hours.
‡T3=triiodothyronine (normal value 1·2-3·4 nmol/l); T4=thyroxine (normal value 51-142 nmol/l); AT=antithyroglobulin; AMF=antimicrosomal fraction; ND=not done.
§Previous total thyroidectomy.
these two disorders has only recently been established. Goh and Wang reported thyroid disorders in 14 out of 319 patients with SLE, nine of whom had clinical evidence of hyperthyroidism consistent with Graves’ disease. In eight of these patients thyroid disorder preceded the manifestations of SLE by one to 11 years. Only two of these patients with thyrotoxicosis then developed hypothyroidism, one after total thyroidectomy. Miller et al found thyroid disease in 25 of 332 patients with SLE—a clinical prevalence of 7.5%. Of these 25, 22 were hypothyroid and three were hyperthyroid. They studied 175 of the remaining 307 clinically euthyroid patients with SLE with a functional thyroid test and found that 44 had either subclinical hypothyroidism or biochemical primary hypothyroidism and that five others had hyperthyroxinaemia. These features suggest that clinical and functional thyroid dysfunction in SLE is more common than expected. The association of thyrotoxicosis with other autoimmune diseases has not been reported frequently. Marshall et al reported clinical hyperthyroidism in four out of 42 patients (10%) with idiopathic thrombocytopenic purpura, and in two additional patients they found a biochemical ‘latent’ Graves’ disease. Thomas and Croft described hyperthyroidism in five of 59 patients with giant cell arteritis. Thyroid disease preceded the onset of arteritis in three cases and, in two, onset was simultaneous.

The association of SLE with thyrotoxicosis was higher among our patients than that reported by other authors. Either ethnic factors or the difficulty of identifying the coexistence of these two disorders owing to their similar clinical manifestations may account for these different prevalences. We did not study our remaining patients with SLE with thyroid function tests, thus we do not know the overall prevalence of functional thyroid disorder in our patients with SLE.

The association of Hashimoto’s thyroiditis with different autoimmune diseases is well known, and even though the former may begin clinically with transient hyperactivity, this thyroiditis usually manifests with hypoactivity. It is now accepted that there is a close relation between Graves’ disease and Hashimoto’s thyroiditis and that both diseases may be considered as different forms of the same process. The fact that longstanding thyrotoxicosis has been seen in patients with thyroid glands, which on microscopy proved to be Hashimoto’s thyroiditis, makes it hard to draw clear cut distinctions between these two thyroid disorders; thus suggesting the term ‘Hashi-Graves’. It would not be unreasonable, therefore, to suggest that our patients had SLE and perhaps one form of presentation of Hashimoto’s thyroiditis.

On the other hand, drug induced SLE related to the use of the antithyroid drug propylthiouracil has been reported. True coexistence of both diseases might have been erroneously attributed to this observation. None of our patients had been treated with propylthiouracil, and only two patients had been given methylmercaptoimidazole before developing SLE; this drug and propylthiouracil are members of the thionamide class. Association of the former drug with induced SLE has not been clearly established. One of the two patients given methylmercaptoimidazole had discontinued antithyroid treatment at least one month before the onset of lupus, and the other patient died owing to renal failure related to active glomerulonephritis.

The early differential diagnosis between SLE and thyrotoxicosis can be difficult because they share some similar clinical manifestations. Perhaps routine inclusion of clinical and functional thyroid tests in patients with SLE and vice versa would reveal a larger number of cases of overlap.

References

Systemic lupus erythematosus and thyrotoxicosis: a hitherto little recognised association.

S Rodrigué, H Laborde and P M Catoggio

doi: 10.1136/ard.48.5.424

Updated information and services can be found at:
http://ard.bmj.com/content/48/5/424

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/